#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo


During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H+/K+-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H+/K+-ATPase and the Notch signaling pathway.


Vyšlo v časopise: Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo. PLoS Genet 8(12): e32767. doi:10.1371/journal.pgen.1003121
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003121

Souhrn

During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H+/K+-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H+/K+-ATPase and the Notch signaling pathway.


Zdroje

1. BurdineRD, SchierAF (2000) Conserved and divergent mechanisms in left-right axis formation. Genes Dev 14: 763–776.

2. LevinM (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122: 3–25.

3. McGrathJ, BruecknerM (2003) Cilia are at the heart of vertebrate left-right asymmetry. Curr Opin Genet Dev 13: 385–392.

4. BurnSF, HillRE (2009) Left-right asymmetry in gut development: what happens next? Bioessays 31: 1026–1037.

5. MercolaM (2003) Left-right asymmetry: nodal points. J Cell Sci 116: 3251–3257.

6. HirokawaN, TanakaY, OkadaY, TakedaS (2006) Nodal flow and the generation of left-right asymmetry. Cell 125: 33–45.

7. SutherlandMJ, WareSM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet 151C: 307–317.

8. BoormanCJ, ShimeldSM (2002) The evolution of left-right asymmetry in chordates. Bioessays 24: 1004–1011.

9. YasuiK, ZhangS, UemuraM, SaigaH (2000) Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development 127: 187–195.

10. DubocV, RottingerE, BesnardeauL, LaprazF, LepageT (2005) Left-right asymmetry in the sea urchin embryo is regulated by Nodal signalling on the right side. Developmental Cell 9: 147–158.

11. GrandeC, PatelNH (2009) Nodal signalling is involved in left-right asymmetry in snails. Nature 457: 1007–1011.

12. CoutelisJB, PetzoldtAG, SpederP, SuzanneM, NoselliS (2008) Left-right asymmetry in Drosophila. Semin Cell Dev Biol 19: 252–262.

13. OkumuraT, UtsunoH, KurodaJ, GittenbergerE, AsamiT, et al. (2008) The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev Dyn 237: 3497–3515.

14. LevinM (1997) Left-right asymmetry in vertebrate embryogenesis. Bioessays 19: 287–296.

15. RamsdellAF, YostHJ (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14: 459–465.

16. BlumM, WeberT, BeyerT, VickP (2009) Evolution of leftward flow. Semin Cell Dev Biol 20: 464–471.

17. GrosJ, FeistelK, ViebahnC, BlumM, TabinCJ (2009) Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 324: 941–944.

18. LevinM, MercolaM (1999) Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 126: 4703–4714.

19. LevinM, ThorlinT, RobinsonKR, NogiT, MercolaM (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111: 77–89.

20. KramerKL, YostHJ (2002) Ectodermal Syndecan-2 Mediates Left-Right Axis Formation in Migrating Mesoderm as a Cell-Nonautonomous Vg1 Cofactor. Developmental Cell 2: 115–124.

21. TabinC (2005) Do we know anything about how left-right asymmetry is first established in the vertebrate embryo? J Mol Histol 36: 317–323.

22. BrennanJ, NorrisDP, RobertsonEJ (2002) Nodal activity in the node governs left-right asymmetry. Genes Dev 16: 2339–2344.

23. SaijohY, OkiS, OhishiS, HamadaH (2003) Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol 256: 160–172.

24. TanakaC, SakumaR, NakamuraT, HamadaH, SaijohY (2007) Long-range action of Nodal requires interaction with GDF1. Genes Dev 21: 3272–3282.

25. CampioneM, SteinbeisserH, SchweickertA, DeisslerK, van BebberF, et al. (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126: 1225–1234.

26. YoshiokaH, MenoC, KoshibaK, SugiharaM, ItohH, et al. (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94: 299–305.

27. LuMF, PressmanC, DyerR, JohnsonRL, MartinJF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401: 276–278.

28. RayaA, BelmonteJC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 7: 283–293.

29. SchweickertA, WalentekP, ThumbergerT, DanilchikM (2012) Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation 83: S67–77.

30. VandenbergLN, LevinM (2010) Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 239: 3131–3146.

31. KawakamiY, RayaA, RayaRM, Rodriguez-EstebanC, BelmonteJC (2005) Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435: 165–171.

32. HibinoT, IshiiY, LevinM, NishinoA (2006) Ion flow regulates left-right asymmetry in sea urchin development. Dev Genes Evol 216: 265–276.

33. RayaA, KawakamiY, Rodriguez-EstebanC, IbanesM, Rasskin-GutmanD, et al. (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427: 121–128.

34. WalentekP, BeyerT, ThumbergerT, SchweickertA, BlumM (2012) ATP4a Is Required for Wnt-Dependent Foxj1 Expression and Leftward Flow in Xenopus Left-Right Development. Cell Rep 1: 516–527.

35. PrzemeckGK, HeinzmannU, BeckersJ, Hrabe de AngelisM (2003) Node and midline defects are associated with left-right development in Delta1 mutant embryos. Development 130: 3–13.

36. RayaA, KawakamiY, Rodriguez-EstebanC, BuscherD, KothCM, et al. (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 17: 1213–1218.

37. KrebsLT, IwaiN, NonakaS, WelshIC, LanY, et al. (2003) Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 17: 1207–1212.

38. Czihak G (1971) Echinoids. In: Reverberi G, editor. Experimental embryology of marine invertebrates. Amsterdam: North-Holland Publ.,. pp. 363–482.

39. Pearse JS, Cameron RA (1991) Echinodermata:Echinoidea. In: Giese AC, Pearse JS, Pearse VB, editors. Reproduction of Marine Invertebrates: Boxwood Press, California. pp. 514–624.

40. RuffinsSW, EttensohnCA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122: 253–263.

41. SherwoodDR, McClayDR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126: 1703–1713.

42. SweetHC, GehringM, EttensohnCA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129: 1945–1955.

43. PehrsonJR, CohenLH (1986) The fate of the small micromeres in sea urchin development. Dev Biol 113: 522–526.

44. McCainER, McClayD (1994) The establishment of bilateral asymmetry in sea urchin embryos. Development 120: 395–404.

45. AiharaM, AmemiyaS (2000) Inversion of left-right asymmetry in the formation of the adult rudiment in sea urchin larvae: removal of a part of embryos at the gastrula stage. Zygote 8 Suppl 1: S82–83.

46. KitazawaC, AmemiyaS (2007) Micromere-derived signal regulates larval left-right polarity during sea urchin development. J Exp Zool Part A Ecol Genet Physiol 307: 249–262.

47. CroceJC, McClayDR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137: 83–91.

48. RottingerE, CroceJ, LhomondG, BesnardeauL, GacheC, et al. (2006) Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133: 4341–4353.

49. RansickA, DavidsonEH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297: 587–602.

50. DubocV, LaprazF, SaudemontA, BessodesN, MekpohF, et al. (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137: 223–235.

51. MaternaSC, DavidsonEH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364: 77–87.

52. AnstromJA, ChinJE, LeafDS, ParksAL, RaffRA (1987) Localization and expression of msp130, a primary mesenchyme lineage- specific cell surface protein in the sea urchin embryo. Development 101: 255–265.

53. OliveriP, WaltonKD, DavidsonEH, McClayDR (2006) Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133: 4173–4181.

54. SethiAJ, WikramanayakeRM, AngererRC, RangeRC, AngererLM (2012) Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science 335: 590–593.

55. de-LeonSB, DavidsonEH (2010) Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc Natl Acad Sci U S A 107: 10103–10108.

56. PeterIS, DavidsonEH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340: 188–199.

57. RandMD, GrimmLM, Artavanis-TsakonasS, PatriubV, BlacklowSC, et al. (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 20: 1825–1835.

58. SchweisguthF (2004) Regulation of notch signaling activity. Curr Biol 14: R129–138.

59. MinoguchiS, TaniguchiY, KatoH, OkazakiT, StroblLJ, et al. (1997) RBP-L, a transcription factor related to RBP-Jkappa. Mol Cell Biol 17: 2679–2687.

60. TanakaY, OkadaY, HirokawaN (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435: 172–177.

61. NeugebauerJM, AmackJD, PetersonAG, BisgroveBW, YostHJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458: 651–654.

62. RottingerE, SaudemontA, DubocV, BesnardeauL, McClayD, et al. (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 135: 353–365.

63. SaudemontA, HaillotE, MekpohF, BessodesN, QuirinM, et al. (2010) Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 6: e1001259 doi:10.1371/journal.pgen.1001259.

64. YaguchiS, YaguchiJ, BurkeRD (2006) Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Development 133: 2337–2346.

65. LaprazF, BesnardeauL, LepageT (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7: e1000248 doi:10.1371/journal.pbio.1000248.

66. DubocV, RottingerE, BesnardeauL, LepageT (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6: 397–410.

67. NonakaS, TanakaY, OkadaY, TakedaS, HaradaA, et al. (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95: 829–837.

68. OkadaY, TakedaS, TanakaY, BelmonteJC, HirokawaN (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121: 633–644.

69. EssnerJJ, AmackJD, NyholmMK, HarrisEB, YostHJ (2005) Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132: 1247–1260.

70. Kramer-ZuckerAG, OlaleF, HaycraftCJ, YoderBK, SchierAF, et al. (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132: 1907–1921.

71. SchweickertA, WeberT, BeyerT, VickP, BoguschS, et al. (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17: 60–66.

72. HyattBA, LohrJL, YostHJ (1996) Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384: 62–65.

73. ChengSK, OlaleF, BrivanlouAH, SchierAF (2004) Lefty Blocks a Subset of TGFbeta Signals by Antagonizing EGF-CFC Coreceptors. PLoS Biol 2: e30 doi:10.1371/journal.pbio.0020030.

74. RankinCT, BuntonT, LawlerAM, LeeSJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24: 262–265.

75. LopesSS, LourencoR, PachecoL, MorenoN, KreilingJ, et al. (2010) Notch signalling regulates left-right asymmetry through ciliary length control. Development 137: 3625–3632.

76. GourroncF, AhmadN, NedzaN, EgglestonT, RebagliatiM (2007) Nodal activity around Kupffer's vesicle depends on the T-box transcription factors Notail and Spadetail and on Notch signaling. Dev Dyn 236: 2131–2146.

77. EttensohnCA (1992) Cell interactions and mesodermal cell fates in the sea urchin embryo. Dev Suppl 43–51.

78. SweetHC, HodorPG, EttensohnCA (1999) The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126: 5255–5265.

79. McClayDR, PetersonRE, RangeRC, Winter-VannAM, FerkowiczMJ (2000) A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 127: 5113–5122.

80. CroceJ, DuloquinL, LhomondG, McClayDR, GacheC (2006) Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Development 133: 547–557.

81. TakataH, KominamiT (2004) Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei. Dev Growth Differ 46: 23–35.

82. CaronA, XuX, LinX (2012) Wnt/beta-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer's vesicle. Development 139: 514–524.

83. Emily-FenouilF, GhiglioneC, LhomondG, LepageT, GacheC (1998) GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125: 2489–2498.

84. LoganCY, MillerJR, FerkowiczMJ, McClayDR (1999) Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126: 345–357.

85. VaccariT, DuchiS, CorteseK, TacchettiC, BilderD (2010) The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137: 1825–1832.

86. YanY, DenefN, SchupbachT (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17: 387–402.

87. GottardiCJ, CaplanMJ (1993) An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol 121: 283–293.

88. ChangH, ZwijsenA, VogelH, HuylebroeckD, MatzukMM (2000) Smad5 is essential for left-right asymmetry in mice. Dev Biol 219: 71–78.

89. KishigamiS, YoshikawaS, CastranioT, OkazakiK, FurutaY, et al. (2004) BMP signaling through ACVRI is required for left-right patterning in the early mouse embryo. Dev Biol 276: 185–193.

90. ChocronS, VerhoevenMC, RentzschF, HammerschmidtM, BakkersJ (2007) Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 305: 577–588.

91. FurtadoMB, SollowayMJ, JonesVJ, CostaMW, BibenC, et al. (2008) BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev 22: 3037–3049.

92. SmithKA, NoelE, ThurlingsI, RehmannH, ChocronS, et al. (2011) Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish. PLoS Genet 7: e1002289 doi:10.1371/journal.pgen.1002289.

93. Monsoro-BurqA, Le DouarinN (2000) Left-right asymmetry in BMP4 signalling pathway during chick gastrulation. Mech Dev 97: 105–108.

94. PiedraME, RosMA (2002) BMP signaling positively regulates Nodal expression during left right specification in the chick embryo. Development 129: 3431–3440.

95. SchlangeT, ArnoldHH, BrandT (2002) BMP2 is a positive regulator of Nodal signaling during left-right axis formation in the chicken embryo. Development 129: 3421–3429.

96. TsiairisCD, McMahonAP (2009) An Hh-dependent pathway in lateral plate mesoderm enables the generation of left/right asymmetry. Curr Biol 19: 1912–1917.

97. FujiwaraT, DehartDB, SulikKK, HoganBL (2002) Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse. Development 129: 4685–4696.

98. ViottiM, NiuL, ShiSH, HadjantonakisAK (2012) Role of the gut endoderm in relaying left-right patterning in mice. PLoS Biol 10: e1001276 doi:10.1371/journal.pbio.1001276.

99. BurkeRD, AngererLM, ElphickMR, HumphreyGW, YaguchiS, et al. (2006) A genomic view of the sea urchin nervous system. Dev Biol

100. MenoC, SaijohY, FujiiH, IkedaM, YokoyamaT, et al. (1996) Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381: 151–155.

101. MenoC, ShimonoA, SaijohY, YashiroK, MochidaK, et al. (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94: 287–297.

102. NakamuraT, MineN, NakaguchiE, MochizukiA, YamamotoM, et al. (2006) Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11: 495–504.

103. DubocV, LaprazF, BesnardeauL, LepageT (2008) Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Dev Biol 320: 49–59.

104. RoyM, PearWS, AsterJC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17: 52–59.

105. UdelnowA, KreyesA, EllingerS, LandfesterK, WaltherP, et al. (2011) Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PLoS ONE 6: e20143 doi:10.1371/journal.pone.0020143.

106. PatlollaJM, ZhangY, LiQ, SteeleVE, RaoCV (2011) Anti-carcinogenic properties of omeprazole against human colon cancer formation in rats. Int J Oncol

107. LepageT, GacheC (1989) Purification and characterization of the sea urchin embryo hatching enzyme. J Biol Chem 264: 4787–4793.

108. DubocV, LepageT (2006) A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zoolog B Mol Dev Evol

109. RangeR, LaprazF, QuirinM, MarroS, BesnardeauL, et al. (2007) Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-{beta} related to Vg1. Development 134: 3649–3664.

110. LongabaughWJ, DavidsonEH, BolouriH (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789: 363–374.

111. ArnoneMI, DmochowskiIJ, GacheC (2004) Using reporter genes to study cis-regulatory elements. Methods Cell Biol 74: 621–652.

112. Harland RM (1991) In situ hybridization: an improved whole mount method for Xenopus embryos. In: Kay BK, Peng HJ, editors. Methods in Cell Biology. San Diego, Calif.: Academic Press Inc. pp. 685–695.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#