#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Polyméry s molekulovými odtlačkami


Polyméry s molekulovými odtlačkami

V súčasnosti je známych približne 28 miliónov rôznych jednoduchých alebo komplikovaných zlúčenín. Dnes si ťažko môžeme predstaviť život bez rôznorodých druhov liečiv, kozmetických prípravkov, pesticídov, prísad do potravín, alebo povzbudzujúcich prostriedkov. V poslednom čase v oblasti analytickej chémii, alebo farmácie stále viac sa vyžaduje použiť moderné techniky alebo nové metodológie, ktoré umožňujú selektívne stanovenie rôznych analytov, zvlášť v zložitých biologických vzorkách. Stále častejšie na prípravu vzoriek k analýze sa využívajú polyméry s molekulovými odtlačkami, pomocou ktorých možno značne zabrániť interferenciám pri stanovení stopových koncentrácií analytov. Tato práca sa zaoberá charakterizáciou, prípravou, vlastnosťami a aplikáciou polymérov s molekulovými odtlačkami v oblasti analýzy vzoriek liečiv, kozmetických prípravkov, potravín a biologických materiálov.

Klíčová slova:
polyméry s olekulovými odtlačkami, hromatografia, extrakcia, liečiva


Autoři: Natalia Denderz;  Jozef Lehotay;  Jozef Čižmárik
Působiště autorů: Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Chemistry ;  Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Slovak Republic
Vyšlo v časopise: Čes. slov. Farm., 2012; 61, 79-86
Kategorie: Přehledy a odborná sdělení

Souhrn

V súčasnosti je známych približne 28 miliónov rôznych jednoduchých alebo komplikovaných zlúčenín. Dnes si ťažko môžeme predstaviť život bez rôznorodých druhov liečiv, kozmetických prípravkov, pesticídov, prísad do potravín, alebo povzbudzujúcich prostriedkov. V poslednom čase v oblasti analytickej chémii, alebo farmácie stále viac sa vyžaduje použiť moderné techniky alebo nové metodológie, ktoré umožňujú selektívne stanovenie rôznych analytov, zvlášť v zložitých biologických vzorkách. Stále častejšie na prípravu vzoriek k analýze sa využívajú polyméry s molekulovými odtlačkami, pomocou ktorých možno značne zabrániť interferenciám pri stanovení stopových koncentrácií analytov. Tato práca sa zaoberá charakterizáciou, prípravou, vlastnosťami a aplikáciou polymérov s molekulovými odtlačkami v oblasti analýzy vzoriek liečiv, kozmetických prípravkov, potravín a biologických materiálov.

Klíčová slova:
polyméry s olekulovými odtlačkami, hromatografia, extrakcia, liečiva


Zdroje

1. Poole C. F.: New trends in solid-phase extraction. Trends Anal. Chem. 2003; 22, 362–373.

2. Altun Z., Abdel-Rehim M., Blomberg L. G.: New trends in sample preparation: on-line microextraction in packed syringe (MEPS) for LC and GC applications Part III: Determination and validation of local anaesthetics in human plasma samples using a cation-exchange sorbent and MEPS-LC-MS-MS. J. Chromatogr. B 2004; 813, 129–135.

3. Huck C. W., Bonn G. K.: Recent developments in polymer-based sorbents for solid-phase extraction, Review. J. Chromatogr. A 2000; 885; 51–72.

4. Bielicka-Daszkiewicz K., Voelkel A.: Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta 2009; 80, 614–621.

5. Stevenson D.: Molecular imprinted polymers for solid-phase extraction. Trends Anal. Chem. 1999; 18, 154–158.

6. Picó Y., Fernández M., Ruiz M. J., Font G.: Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment, Review. J. Biochem. Bioph. Methods 2007; 70, 117–131.

7. Xu Z. X., Gao H. J., Zhang L. M., Chen X. Q., Qiao X. G.: The Biomimetic Immunoassay Based on Molecularly Imprinted Polymer: A omprehensive Review of Recent Progress and Future Prospects. J. Food Sci. 2011; 76, R69–R75.

8. Bui B. T. S., Haupt K.: Molecularly imprinted polymers: synthetic receptors in bioanalysis, Review. Anal. Bioanal. Chem. 2010; 398, 2481–2492.

9. Shi Y., Zhang J., Shi D., Jiang M., Zhu Y., Mei S., Zhou Y., Dai K., Lu B.: Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples. J. Pharm. Biomed. Anal. 2006; 42, 549–555.

10. He Ch., Long Y., Pan J., Li K., Liu F.: Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples, Review. J. Biochem. Bioph. Methods 2007; 570, 133–150.

11. Valtchev M., Palm B.S., Schiller M., Steinfeld U.: Development of sulfamethoxazole-imprinted polymers for the selective extraction from waters. J. Hazard. Mater. 2009; 170, 722–728.

12. Zi-Hui M., Qin L.: Determination of degradation products of nerve agents in human serum by solid-phase extraction using molecularly imprinted polymer. Anal. Chim. Acta 2001; 435, 121–127.

13. Tom L. A., Foster N.: Development of a molecularly imprinted polymer for the analysis of avermectin. Anal. Chim. Acta 2010; 680, 79–85.

14. Alexander C., Andersson H. S., Andersson L. I., Ansell R. J., Kirsch N., Nicholls I. A., O’Mahony J., Whitcombe M. J.: Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, Review. J. Mol. Recognit. 2006; 19, 106–180.

15. Theodoridis G., Manesiotis P.: Selective solid-phase extraction sorbent for caffeine made by molecular imprinting. J. Chromatogr. A 2002, 948, 163–169.

16. Izenberg N. R., Murrray G. M., Pilato R. S., Baird L. M., Levin S. M., Van Houten K. A.: Astrobiological molecularly imprinted polymer sensors. Planet. Space Sci. 2009; 57, 846–853.

17. Luliński P.: Polimery ze śladem molekularnym w naukach farmaceutycznych. Cz. I. Podstawy procesu tworzenia śladu molekularnego. Zastosowanie w syntezie leków i echnologii postaci leku. Polimery 2010; 55, 799–805.

18. Whitcombe M. J., Vulfson E. N.: Imprinted Polymers. Adv. Mater. 2001; 13, 467–468.

19. Ansell R. J., Kriz D., Mosbach K.: Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors. Curr. Opin. Biotechnol. 1996; 7, 89–94.

20. Turiel E., Martin-Esteban A.: Molecularly imprinted polymers for sample preparation: A eview, Review. Anal. Chim. Acta 2010; 668, 87–99.

21. Yan H., Row K. H.: Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 2006; 7, 155–178.

22. Pan J., Xue X., Wang J., Xie H., Wu Z.: Recognition property and preparation of Staphylococcus aureus protein A-imprinted polyacrylamide polymers by inverse-phase suspension and bulk polymerization. Polymer 2009; 50, 2365–2372.

23. Jing T., Gao X. D., Wang P., Wang Y., Lin Y. F., Zong X. Ch., Zhou Y. K., Mei S. R.: Preparation of high selective molecularly imprinted polymers for tetracycline by precipitation polymerization. Chin. Chem. Lett. 2007; 18, 1535–1538.

24. Kitahara K., Yoshihama I., Hanada T., Kokuba H., Arai S.: Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface. J. Chromatogr. A 2010; 1217, 7249–7254.

25. Turiel E., Tadeo J. L., Cormack P. A. G., Martin-Esteban A.: HPLC imprinted-stationary phase prepared by precipitation polymerization for the determination of thiabendazole in fruit. The Analyst 2005; 130, 1601–1607.

26. Hoa K., Yeh W., Tung T., Liao J.: Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal. Chim. Acta 2005; 542, 90–96.

27. Tamayo F. G., Casillas J. L., Martin-Esteban A.: Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerization and its application to the clean-up of fenuron in plant samples. Anal. Chim. Acta 2003; 482, 165–173.

28. Pérez-Moral N., Mayes A. G.: Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal. Chim. Acta 2004; 504, 15–21.

29. Jin Y., Jiang M., Shi Y., Lin Y., Peng Y., Dai K., Lu B.: Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Anal. Chim. Acta 2008; 612, 05–113.

30. Hosoya K., Yoshizako K., Shirasu Y., Kimata K., Araki T., Tanaka N., Haginaka J.: Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography. Structural contribution of cross-linked polymer network on specific molecular recognition. J. Chromatogr. A 1996; 728, 139–147.

31. Haginaka, J., Sanbe, H.: Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis. Anal. Chem. 2000; 72, 5206–5210.

32. Liua Y., Liub Z., Gaoa J., Daia J., Hana J., Wanga Y., Xiea J., Yan Y.: Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-upported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 2011; 186, 197–205.

33. Djozan D., Ebrahimi B., Mahkam M., Farajzadeh M. A.: Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber. Anal. Chim. Acta 2010; 674, 40–48.

34. Čižmárik J., Lachová M., Lehotay J., Skačáni I.: Extraction of 1-methyl-2-piperidinoethylesters of alkoxyphenylcarbamic acids from human plasma by imprinted polymers and its comparison with classic solid phase extraction. Čes. slov. Farm. 2009; 58, 78–82.

35. Lachová M., Lehotay J., Skačáni I., Čižmárik J.: Influence of polymerization mixture composition on molecularly imprinted polymers properties prepared with 1-methyl-2--piperidinoethylester of decyloxyphenylcarbamic acid as a template. Modern Analytical Chemistry. Prague 2008; 49–52.

36. Jafari M.T., Rezaei B., Javaheri M.: A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline, Food Chem. 2011; 126, 1964–1970.

37. Shih-Kai Ch., Mei-Jywan S.: Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin. Biomaterials 2009; 30, 1255–1262.

38. Meng Z., Wang J., Zhou L., Wang Q., Zhu D.: High performance cocktail functional monomer for making molecule imprinting polymer. Anal. Sci. 1999; 15, 141–144.

39. Yoshimi Y., Arai R., Nakayama S.: Influence of the solvent on nature of gate effect in molecularly imprinted membrane. Anal. Chim. Acta 2010; 682, 110–116.

40. Moreira F. T. C., Kamel A. H., Guerreiro R. L., Azevedo V., Sales M. G. F.: New potentiometric sensors based on two competitive recognition sites for determining tetracycline residues using flow-through system. Procedia Engineering 2010; 5, 1200–1203.

41. Gavrilovic I., Mitchell K., Brailsford A. D., Cowan D. A., Kicman A.T., Ansell R. J.: A molecularly imprinted receptor for separation of testosterone and epitestosterone, based on a steroidal cross-linker, Steroids 2011; 76, 478–483.

42. Joshi V. P., Kulkarni M. G., Mashelkar R. A.: Enhancing adsorptive separations by molecularly imprinted polymers: Role of imprinting techniques and system parameters. Chem. Eng. Sci. 2000; 55, 1509–1522.

43. Zhiong Ch., Yuanzong L.: The role of molecular recognition in regulating the catalytic activity of peroxidase-like polymers imprinted by a reductant substrate. J. Mol. Catal. A: Chem. 2006; 256, 9–15.

44. Lachová M., Lehotay J., Skačáni I., Čižmárik J.: Possibility of using of molecular imprinted polymers on sorption selectivity of some phenyl carbamic derivatives. Farm. Obzor 2008; 77, 37–40.

45. Saifuddin, N., Nur, Y. A. A., Abdullah, S. F.: Microwave enhanced synthesis of chitosan-graft-polyacrylamide molecular imprinting polymer for selective removal of 17β-estradiol at trace concentration. Asian J. Biochem. 2011; 6, 38-54.

46. Zhou J., He X., Li Y.: An acrylamide-based molecularly imprinted polymer for the efficient recognition of optical amino acid hydantoins. Anal. Commun. 1999; 36, 243–246.

47. Thazhathuparambil E. M., Krishnapillai P. P., Talasila P. R.: Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J. Hazard. Mater. 2011; 188, 384–390.

48. Luliński P., Maciejewska D.: Impact of functional monomers, cross-linkers and porogens on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers. Mater. Sci. Eng., C 2011; 31, 281–289.

49. Lämmerhofer M., Gargano A.: Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. J. Pharm. Biomed. Anal. 2010; 53, 1091–1123.

50. Luo X., Zhan Y., Huang Y., Yang L., Tu X., Luo S.: Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. J. Hazard. Mater. 2011; 187, 274–282.

51. Surong M., Da W., Ming J., Bin L., Jae-Min L., Yi-Kai Z., Yong-Ill L.: Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem. J. 2011; 98, 150–155.

52. Moring S. E., Wong O. S., Stobaugh J. F.: Target specific sample preparation from aqueous extracts with molecular imprinted polymers. J. Pharm. Biomed. Anal. 2002; 27, 719–728.

53. Augusto de Barros L., Martins I., Rath S.: A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes. Anal. Bioanal.Chem. 2010; 397, 1355–1361.

54. Zhang T., Liu F., Chen W., Wang J., Li K.: Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers. Anal. Chim. Acta 2001; 450, 53–61.

55. Guan G., Liu B., Wang Z., Zhang Z.: Imprinting of molecular recognition Sites on nanostructures and its applications in chemosensors. Review, Sensors 2008; 8, 8291–8320.

56. Xu X., Zhu L., Chen L.: Separation and screening of compounds of biological origin using molecularly imprinted polymers. . Chromatogr. B 2004; 804, 61–69.

57. Soares da Silva M., Väo E. R., Temtem M., Mafra L., Caldeira J., Aguiar-Ricardo A., Casimiro T.: Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases. Biosens. Bioelectron. 2010; 25, 1742–1747.

58. Lachová M., Lehotay J., Čižmárik J.: Applications of molecularly imprinted polymers in analytical and pharmaceutical chemistry. Čes. slov. Farm. 2007; 56, 159–164.

59. Baggiani C., Anfossi L., Giovannoli C.: Solid phase extraction of food contaminants using molecular imprinted polymers. Anal. Chim. Acta 2007; 591, 29–39.

60. Turiel E., Martin-Esteban A.: Molecularly imprinted polymers for solid-phase microextraction, Review. J. Sep. Sci. 2009; 32, 3278–3284.

61. Bunte G., Hurttlen J., Pontius H., Hartlieb K., Krause H.: Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Anal. Chim. Acta 2007; 591, 49–56.

62. Kirsch N., Hedin-Dahlström J., Henschel H., Whitcombe M. J., Wikman S., Nicholls I. A.: Molecularly imprinted polymer catalysis of a Diels-Alder reaction. J. Mol. Catal. B: Enzym. 2009; 58, 10–117.

63. Theodoridis G., Zacharis C. K., Tzanavaras P. D., Themelis D.G., Economou A.: Automated sample preparation based on the sequential injection principle. Solid-phase extraction on a molecularly imprinted polymer coupled on-line to high-performance liquid chromatography. J. Chromatogr. A 2004; 1030, 69–76.

64. Molinelli A., Weiss R., Mizaikoff B.: Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J. Agric. Food. Chem., 2002; 50, 1804–1808.

65. Su S., Zhang M., Li B., Zhang H., Dong X.: HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique. Talanta 2008; 76, 1141–1146.

66. Mhaka B., Cukrowska E., Bui B. T. S., Ramström O., Haupt K., Tutu H., Chimuka L.: Selective extraction of triazine herbicides from food samples based on a combination of a liquid membrane and molecularly imprinted polymers. J. Chromatogr. A 2009; 1216, 6796–6801.

67. Xu Z., Hu Y., Hu Y., Li G.: Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β-agonists in complex samples. J. Chromatogr. A 2010; 1217, 3612–3618.

68. Brambilla G., Fiori M., Rizzo B., Crescenzi V., Masci G.: Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices,. J. Chromatogr. B 2001; 759, 27–32.

69. Carabias-Martinez R., Rodriguez-Gonzalo E., Herrero-Hernandez E.: Determination of triazines and dealkylated and hydroxylated metabolites in river water using a propazine-imprinted polymer. J. Chromatogr. A 2005; 1085, 199–206.

70. Hoshina K., Horiyama S., Matsunaga H., Haginaka J.: Simultaneous determination of non-steroidal anti-inflammatory drugs in river water samples by liquid chromatography-tandem mass spectrometry using molecularly imprinted polymers as a pretreatment column, J. Pharm. Biomed. Anal. 2011; 55, 916–922.

71. Teixeira Tarley C. R., Kubota L. T.: Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Anal. Chim. Acta 2005; 548, 11–19.

72. Lai J.-P., Niessner R., Knopp D.: Benzo[a]pyrene imprinted polymers: Synthesis, characterization and SPE application in water and coffee samples. Anal. Chim. Acta 2004; 522, 137–144.

73. Gros M., Pizzolato T., Petrovi M., Lopez de Alda M.J., Barcelo D.: Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2008; 1189, 374–384.

74. Jiang M., Zhang J. H., Mei S. R., Shi Y., Zou L. J., Zhu Y. X.: Direct enrichment and high performance liquid chromatography analysis of ultra-trace bisphenol A in water samples with narrowly dispersible bisphenol A imprinted polymeric microspheres column. J. Chromatogr. A 2006; 1110, 27–34.

75. Watabe Y., Kondo T., Morita M., Tanaka N., Haginaka J., Hosoya K.: Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J. Chromatogr. A 2004; 1032, 45–49.

76. San Vicente B., Villoslada F. N., Moreno-Bondi M. C.: Continuous solid-phase extraction and preconcentration of bisphenol A in aqueous samples using molecularly imprinted columns. Anal. Chim. Acta 2004; 380, 115–22.

77. Qu S., Wang X., Tong Ch., Wu J.: Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure. J. Chromatogr. A 2010; 1217, 8205–8211.

78. Bjarnason B., Chimuka L., Ramstrom O.: On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Anal. Chem. 1999; 71, 2152–2156.

79. Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrull F.: Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water. J. Chromatogr. A 2004; 1047, 175–180.

80. Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrull F.: On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water. Short communication. J. Chromatogr. A 2003; 995, 233–238.

81. Le Moullec S., Begos A., Pichon V., Bellier B.: Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction. J. Chromatogr. A 2006; 1108, 7–13.

82. Zhu X., Yang J., Su Q., Cai J., Gao Y.: Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. J. Chromatogr. A 2005; 1092, 161–169.

83. Yang L., Zhao X., Zhou J.: Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings. Anal. Chim. Acta 2010; 670, 72–77.

84. Kootstra P. R., Kuijpers C. J. P. F., Wubs K. L., van Doorn D., Sterk S. S., van Ginkel L. A., Stephany R. W.: The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening. Anal. Chim. Acta 2005; 529, 75–81.

85. Crescenzi C., Bayoudh S., Cormack P. A. G., Klein T., Ensing K.: Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry. Anal. Chem. 2001; 73, 2171–2177.

86. Widstrand Ch., Larsson F., Fiori M., Civitareale C., Mirante S., Brambilla G.: Evaluation of MISPE for the multi-residue extraction of β-agonists from calves urine. J. Chromatogr. B 2004; 804, 85–91.

87. Hu Y., Li Y., Liu R., Tan W., Li G.: Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of β-agonists in pork and pig liver samples. Talanta 2011; 84, 462–470.

88. Martin P. D., Jones G. R., Stringer F., Wilson I. D.: Comparison of extraction of a β-blocker from plasma onto a molecularly imprinted polymer with liquid-liquid extraction and solid phase extraction methods. J. Pharm. Biomed. Anal. 2004, 35, 1231–1239.

89. Huanga H. Ch., Lin Ch. I., Joseph A. K., Lee Y. D.: Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications, J. Chromatogr. A 2004; 1027, 263–268.

90. Zaidi S. A., Lee S. M., Cheong W. J.: Open tubular capillary columns with basic templates made by the generalized preparation protocol in capillary electrochromatography chiral separation and template structural effects on chiral separation capability. J. Chromatogr. A 2011; 1218, 1291–1299.

91. Andac M., Say R., Denizli A.: Molecular recognition based cadmium removal from human plasma. J. Chromatogr. B 2004; 811, 119–126.

92. Yavuz H., Say R., Denizli A; Iron removal from human plasma based on molecular recognition using imprinted beads. Mater. Sci. Eng., C 2005; 25, 521–528.

93. Hu S. G., Li L., He X. W.: Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and their determination by high-performance liquid chromatography. Anal. Chim. Acta 2005; 537, 215–222.

94. Bereczki A., Tolokan A., Horvai G., Horvath V., Lanza F., Hall A. J.: Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J. Chromatogr. A 2001; 930, 31–38.

95. Andersson L. I., Hardenborg E., Sandberg-Ställ M., Möller K., Henriksson J., Bramsby-Sjöström I., Olsson L., Abdel-Rehim M.: Development of a molecularly imprinted polymer based solid-phase extraction of local anaesthetics from human plasma. Anal. Chim. Acta 2004; 526, 147–154.

96. Lachová M., Lehotay J., Skačáni I., Čižmárik J.: Isolation of some derivatives of phenylcarbamic acid from human plasma using molecularly imprinted polymers. J. Liq. Chromatogr. Related Technol. 2009; 32, 167–181.

97. Liu X., Liu J., Huang Y., Zhao R., Liu G., Chen Y.: Determination of methotrexate in human serum by high-performance liquid chromatography combined with pseudo template molecularly imprinted polymer. J. Chromatogr. A 2009; 1216, 7533–7538.

98. Blomgrena A., Berggrena Ch., Holmberga A., Larssona F., Sellergren B., Ensing K.: Extraction of clenbuterol from calf urine using a olecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. J. Chromatogr. A 2002; 975, 157–164.

99. Khorrami A.R., Rashidpur A.: Design of a new cartridge for selective solid phase extraction using molecularly imprinted polymers: Selective extraction of theophylline from human serum samples. Biosens. Bioelectron. 2009; 25, 647–651.

100. Javanbakht M., Attaranb A. M., Namjumanesh M. H., Esfandyari-Manesha M., Akbari-Adergani B.: Solid-phase extraction of tramadol from plasma and urine samples using a ovel water-compatible molecularly imprinted polymer. J. Chromatogr. B 2010; 878, 1700–1706.

101. Boos K. S., Fleischer C. T.: Multidimensional on-line solid-phase extraction (SPE) using restricted access materials (RAM) in combination with molecular imprinted polymers (MIP), Fresenius J. Anal. Chem. 2001; 371, 16–20.

102. Yang J., Hu Y., Cai J., Zhu X. L., Su Q. D.: A new molecularly imprinted polymer for selective extraction of cotinine from urine samples by solid-phase extraction. Anal. Bioanal.Chem. 2006; 384, 761–768.

103. Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrull F.: A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solid-phase extraction. J. Chromatogr. B 2004; 813, 137–143.

104. Kriz D., Mosbach K.: Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Anal. Chim. Acta 1995; 300, 71–75.

105. Xie J., Chen L., Li Ch., Xu X.: Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis (hydroxymethyl)butanol trimethacrylate. J. Chromatogr. B 2003; 788, 233–242.

106. Mullett W. M., Walles M., Levsen K., Borlak J., Pawliszyn J.: Multidimensional on-line sample preparation of verapamil and its metabolites by a molecularly imprinted polymer coupled to liquid chromatography-mass spectrometry. J. Chromatogr. B 2004; 801, 297–306.

107. B. Sellergren: Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 1994; 66, 1678–1582.

108. Lachová M., Lehotay J., Karasová G., Skačáni I., Armstrong D. W.: Isolation of L-theanine from plant material using a molecularly imprinted polymer. J. Liq. Chromatogr. Related Technol. 2007; 30, 2045–2058.

109. De Smeta D., Kodeckb V., Dubruelb P., Van Peteghema C. E. Schachtb, De Saeger S.: Design of an imprinted clean-up method for mycophenolic acid in maize. J. Chromatogr. A 2011; 1218, 1122–1130.

110. Lachová M., Lehotay J., Skačáni I., Čižmárik J.: Selective solid-phase extraction of phenylcarbamic acid derivatives from rat serum by molecularly imprinted polymer. Acta Chim. Slovakia 2008; 1, 175–179.

111. Lachová M., Lehotay J., Skačáni I., Čižmárik J.: Molecularly imprinted solid-phase extraction of 1-methyl-2-piperidinoethylesters of alkoxyphenylcarbamic acid from human plasma, comparison with classical solid-phase extraction. J. Liq. Chromatogr. Related Technol. 2009; 32, 2293–2306.

112. Möller K., Nilsson U., Crescenzi C.: Investigation of matrix effects of urine on a molecularly imprinted solid-phase extraction. J. Chromatogr. B 2004; 811, 171–176.

113. Claude B., Morin P., Bayoudh S., de Ceaurriz J.: Interest of molecularly imprinted polymers in the fight against doping Extraction of tamoxifen and its main metabolite from urine followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A 2008; 1196–1197, 81–88.

114. Theodoridis G., Kantifes A., Manesiotis P., Raikos N., Tsoukali-Papadopoulou H.: Preparation of a molecularly imprinted polymer for the solid-phase extraction of scopolamine with hyoscyamine as a ummy template molecule. J. Chromatogr. A 2003; 987, 103–109.

115. Nakamura M., Ono M., Nakajima T., Ito Y., Aketo T., Haginaka J.: Uniformly sized molecularly imprinted polymer for atropine and its application to the determination of atropine and scopolamine in pharmaceutical preparations containing scopolia extract. J. Pharm. Biomed. Anal. 2005; 37, 231–237.

116. Hu Y., Wang Y., Chen X., Hu Y., Li G.: A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples. Talanta 80 2010; 2099–2105.

117. Hu S. G., Wang S. W., He X. W.: An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography. Analyst 2003; 128, 1485–1489.

118. Yin J., Yang G., Chen Y.: Rapid and efficient chiral separation of nateglinide and its L-enantiomer on monolithic molecularly imprinted polymers. J. Chromatogr. A 2005; 1090, 68–75.

119. Caro E., Marce R.M., Cormack P.A.G., Sherrington D.C., Borrull F.: Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples. Anal. Chim. Acta 2006; 562, 145–151.

120. Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrull F.: Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Anal. Chim. Acta 2005; 552, 81–86.

121. Zhang M. L., Xie J. P., Zhou Q., Chen G. Q., Liu Z.: On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith. J. Chromatogr. A 2003; 984, 173–183.

122. Dong X. C., Wei W. A., Ma S. J., Sun H., Li Y., Guo J. Q.: Molecularly imprinted solid-phase extraction of (-)-ephedrine from chinese ephedra. J. Chromatogr. A 2005; 1070, 125–130.

123. Zhu L. L., Xu X. J.: Selective separation of active inhibitors of epidermal growth factor receptor from Caragana jubata by molecularly imprinted solid-phase extraction. J. Chromatogr. A 2003; 991, 151–158.

124. Mena M. L., Agui L., Martinez-Ruiz P., Yanez-Sedeno P., Reviejo A. J., Pingarron J. M.: Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal. Bioanal.Chem. 2003; 376, 18–25.

125. Sambe H., Hoshina K., Moaddel R., Wainer I. W., Haginaka J.: Uniformly-sized, molecularly imprinted polymers for nicotine by precipitation polymerization. J. Chromatogr. A 2006; 1134, 88–94.

Štítky
Farmácia Farmakológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#