#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Efficacy of a workplace osteoporosis prevention intervention: a cluster randomized trial


Background:
Osteoporosis is a debilitating disease. Adequate calcium consumption and physical activity are the two major modifiable risk factors. This paper describes the major outcomes and efficacy of a workplace-based targeted behaviour change intervention to improve the dietary and physical activity behaviours of working women in sedentary occupations in Singapore.

Methods:
A cluster-randomized design was used, comparing the efficacy of a tailored intervention to standard care. Workplaces were the units of randomization and intervention. Sixteen workplaces were recruited from a pool of 97, and randomly assigned to intervention and control arms (eight workplaces in each). Women meeting specified inclusion criteria were then recruited to participate. Workplaces in the intervention arm received three participatory workshops and organization-wide educational activities. Workplaces in the control/standard care arm received print resources. Outcome measures were calcium intake (milligrams/day) and physical activity level (duration: minutes/week), measured at baseline, 4 weeks and 6 months post intervention. Adjusted cluster-level analyses were conducted comparing changes in intervention versus control groups, following intention-to-treat principles and CONSORT guidelines.

Results:
Workplaces in the intervention group reported a significantly greater increase in calcium intake and duration of load-bearing moderate to vigorous physical activity (MVPA) compared with the standard care control group. Four weeks after intervention, the difference in adjusted mean calcium intake was 343.2 mg/day (95 % CI = 337.4 to 349.0, p < .0005) and the difference in adjusted mean load-bearing MVPA was 55.6 min/week (95 % CI = 54.5 to 56.6, p < .0005). Six months post intervention, the mean differences attenuated slightly to 290.5 mg/day (95 % CI = 285.3 to 295.7, p < .0005) and 50.9 min/week (95 % CI =49.3 to 52.6, p < .0005) respectively.

Conclusion:
This workplace-based intervention substantially improved calcium intake and load-bearing moderate to vigorous physical activity 6 months after the intervention began.

Trial registration:
Australia New Zealand Clinical Trial Registry ACTRN12616000079448. Registered 25 January 2016 (retrospectively registered)

Keywords:
Osteoporosis prevention, Cluster randomized trial, Premenopausal women, Workplace, Calcium intake, Physical activity


Autoři: Ai May Tan 1*;  Anthony D. Lamontagne 1,2;  Dallas R. English 3,4;  Peter Howard 5
Působiště autorů: McCaughey Centre: VicHealth Centre for the Promotion of Mental Health & Community Wellbeing, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 010, Australia. 1;  Centre for Population Health Research, Building BC, Level , School of Health & Social Development, Deakin University, Burwood, VIC 12 , Australia. 2;  Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia. 3;  Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne 3004, Australia. 4;  Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia. 5
Vyšlo v časopise: BMC Public Health 2016, 16:859
Kategorie: Research article
prolekare.web.journal.doi_sk: https://doi.org/10.1186/s12889-016-3506-y

© 2016 The Author(s).

Open access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-016-3506-y

Souhrn

Background:
Osteoporosis is a debilitating disease. Adequate calcium consumption and physical activity are the two major modifiable risk factors. This paper describes the major outcomes and efficacy of a workplace-based targeted behaviour change intervention to improve the dietary and physical activity behaviours of working women in sedentary occupations in Singapore.

Methods:
A cluster-randomized design was used, comparing the efficacy of a tailored intervention to standard care. Workplaces were the units of randomization and intervention. Sixteen workplaces were recruited from a pool of 97, and randomly assigned to intervention and control arms (eight workplaces in each). Women meeting specified inclusion criteria were then recruited to participate. Workplaces in the intervention arm received three participatory workshops and organization-wide educational activities. Workplaces in the control/standard care arm received print resources. Outcome measures were calcium intake (milligrams/day) and physical activity level (duration: minutes/week), measured at baseline, 4 weeks and 6 months post intervention. Adjusted cluster-level analyses were conducted comparing changes in intervention versus control groups, following intention-to-treat principles and CONSORT guidelines.

Results:
Workplaces in the intervention group reported a significantly greater increase in calcium intake and duration of load-bearing moderate to vigorous physical activity (MVPA) compared with the standard care control group. Four weeks after intervention, the difference in adjusted mean calcium intake was 343.2 mg/day (95 % CI = 337.4 to 349.0, p < .0005) and the difference in adjusted mean load-bearing MVPA was 55.6 min/week (95 % CI = 54.5 to 56.6, p < .0005). Six months post intervention, the mean differences attenuated slightly to 290.5 mg/day (95 % CI = 285.3 to 295.7, p < .0005) and 50.9 min/week (95 % CI =49.3 to 52.6, p < .0005) respectively.

Conclusion:
This workplace-based intervention substantially improved calcium intake and load-bearing moderate to vigorous physical activity 6 months after the intervention began.

Trial registration:
Australia New Zealand Clinical Trial Registry ACTRN12616000079448. Registered 25 January 2016 (retrospectively registered)

Keywords:
Osteoporosis prevention, Cluster randomized trial, Premenopausal women, Workplace, Calcium intake, Physical activity


Zdroje

1. N. I. H. Consensus development panel on osteoporosis prevention diagnosis and therapy. JAMA. 2001;285(6):785–95. doi:10.1001/jama.285.6.785.

2. Osteoporosis: MOH Clinical Practice Guidelines 3/2008. Ministry of Health (Singapore) 2009.

3. Katzmarzyk PT, Janssen I. The economic costs associated with physical inactivity and obesity in Canada: an update. Can J Appl Physiol. 2004;29(1):90–115. doi:10.1139/h04-008.

4. Warensjö E, Byberg L, Melhus H, Gedeborg R, Mallmin H, Wolk A, et al. Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. BMJ Clin Res. 2011;342:d1473. doi:10.1136/bmj.d1473.

5. Laslett LL, Lynch J, Sullivan TR, McNeil JD. Osteoporosis education improves osteoporosis knowledge and dietary calcium: comparison of a 4 week and a one-session education course. Int J Rheum Dis. 2011;14(3):239–47. doi:10.1111/j.1756-185X.2011.01628.x.

6. Tussing L, Chapman-Novakofski K. Osteoporosis prevention education: behavior theories and calcium intake. J Am Diet Assoc. 2005;105(1):92–7.

7. Francis KL, Matthews BL, Van Mechelen W, Bennell KL, Osborne RH. Effectiveness of a community-based osteoporosis education and selfmanagement course: a wait list controlled trial. Osteoporos Int. 2009;9:1563–70.

8. Newman ED, Hanus P. Improved bone health behavior using community pharmacists as educators: the Geisinger health system community pharmacist osteoporosis education program. Dis Manag Health Outcomes. 2001;9:329–35.

9. Rolnick SJ, Kopher R, Jackson J, Fischer LR, Compo R. What is the impact of osteoporosis education and bone mineral density testing for postmenopausal women in a managed care setting? Menopause. 2001;8(2):141–8.

10. Peterson BA, Klesges RC, Kaufman EM, Cooper TV, Vukadinovich CM. The effects of an educational intervention on calcium intake and bone mineral content in young women with low calcium intake. Am J Health Promot. 2000;14(3):149–56.

11. Blalock SJ, Currey SS, DeVellis RF, DeVellis BM, Giorgino KB, Anderson JJ, et al. Effects of educational materials concerning osteoporosis on women’s knowledge, beliefs, and behavior. Am J Health Promot. 2000;14(3):161–9.

12. Jamal SA, Ridout R, Chase C, Fielding L, Rubin LA, Hawker GA. Bone mineral density testing and osteoporosis education improve lifestyle behaviors in premenopausal women: a prospective study. J Bone Miner Res. 1999;14(12):2143–9. doi:10.1359/jbmr.1999.14.12.2143.

13. Constans T, Delarue J, Rivol M, Theret V, Lamisse F. Effects of nutrition education on calcium intake in the elderly. J Am Diet Assoc. 1994;94(4):447–8.

14. Brecher LS, Pomerantz SC, Snyder BA, Janora DM, Klotzbach-Shimomura KM, Cavalieri TA. Osteoporosis prevention project: a model multidisciplinary educational intervention. J Am Osteopath Assoc. 2002;102(6):327–35.

15. Cook B, Noteloviz M, Rector C, Krischer JP. An osteoporosis patient education and screening program: results and implications. Patient Educ Couns. 1991;17(2):135–45. 11p.

16. Bohaty K, Rocole H, Wehling K, Waltman N. Testing the effectiveness of an educational intervention to increase dietary intake of calcium and vitamin D in young adult women. J Am Acad Nurse Pract. 2008;20(2):93–9. doi:10.1111/j.1745-7599.2007.00281.x.

17. Solomon DH, Finkelstein JS, Polinski JM, Arnold M, Licari A, Cabral D, et al. A randomized controlled trial of mailed osteoporosis education to older adults. Osteoporos Int. 2006;17(5):760–7. doi:10.1007/s00198-005-0049-y.

18. Weiss M, Yogev R, Dolev E. Occupational Sitting and Low Hip Mineral Density. Calcif Tissue Int. 1998;62(1):47–50. doi:10.1007/s002239900393.

19. Tan AM, LaMontagne A, Sarmugam R, Howard P. A cluster-randomised, controlled trial to assess the impact of a workplace osteoporosis prevention intervention on the dietary and physical activity behaviours of working women: study protocol. BMC Public Health. 2013;13(1):405.

20. Thomson FE, Subar AF. Dietary Assessment Methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG, editors. Nutrition In The Prevention And Treatment Of Disease. Oxford: Elsevier Inc; 2013. p. 5–46.

21. Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE. Validity and repeatability of the EPIC-Norfolk Physical Activity Questionnaire. Int J Epidemiol. 2002;31(1):168–74.

22. Horan ML, Kim KK, Gendler P, Froman RD, Patel MD. Development and evaluation of the Osteoporosis Self-Efficacy Scale. Res Nurs Health. 1998;21(5):395–403.

23. Bandura A. Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall; 1986.

24. Hien VT, Khan NC, le Mai B, Lam NT, Phuong TM, Nhung BT, et al. Effect of community-based nutrition education intervention on calcium intake and bone mass in postmenopausal Vietnamese women. Public Health Nutr. 2009;12(5):674–9. doi:10.1017/S1368980008002632.

25. Lv N, Brown JL. Impact of a nutrition education program to increase intake of calcium-rich foods by Chinese-American women. J Am Diet Assoc. 2011;111(1):143–9. doi:10.1016/j.jada.2010.10.005.

26. Jung ME, Martin Ginis KA, Phillips SM, Lordon CD. Increasing calcium intake in young women through gain-framed, targeted messages: a randomised controlled trial. Psychol Health. 2011;26(5):531–47. doi:10.1080/08870441003611544.

27. Sanders KM, Stuart AL, Kotowicz MA, Nicholson GC. Annual feedback is an effective tool for a sustained increase in calcium intake among older women. Nutrients. 2010;2(9):1018–25. doi:10.3390/nu20901018.

28. Kelley GA. Aerobic exercise and bone density at the Hip in postmenopausal women: a meta-analysis. Prev Med. 1998;27(6):798–807. http://dx.doi.org/10.1006/pmed.1998.0360.

29. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in Pre- and postmenopausal women. Calcif Tissue Int. 2000;67(1):10–8. doi:10.1007/s00223001089.

30. Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JL. Exercise and bone mass in adults. Sports Med. 2009;39(6):439–68. doi:10.2165/00007256-200939060-00002.

31. Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, Twisk JWR. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in Pre- and postmenopausal women. Osteoporos Int. 1999;9(1):1–12. doi:10.1007/s001980050109.

32. Conn VS, Hafdahl AR, Mehr DR. Interventions to increase physical activity among healthy adults: meta-analysis of outcomes. Am J Public Health. 2011;101(4):751–8. doi:10.2105/AJPH.2010.194381.

33. Conn VS, Hafdahl AR, Cooper PS, Brown LM, Lusk SL. Meta-analysis of workplace physical activity interventions. Am J Prev Med. 2009;37(4):330–9. doi:10.1016/j.amepre.2009.06.008.

34. National Health Survey. In: Health SMo, eds: Singapore Ministry of Health; 2004.

35. Hayes R, Moulton L. Basic Principles of Analysis. Cluster Randomised Trials. Boca Raton: Chapman and Hall; 2009. p. 149–60.

36. Campbell MK, Elbourne DR, Altman DG. CONSORT statement: extension to cluster randomised trials. BMJ Clin Res. 2004;328(7441):702–8. doi:10.1136/bmj.328.7441.702.

37. Hayes R, Moulton L. Analysis Based On Cluster-level Summaries Cluster Randomised Trials. Boca Raton: Chapman and Hall; 2009. p. 163–94.

38. Ukoumunne OC, Gulliford MC, Chinn S, Sterne JA, Burney PG. Methods for evaluating area-wide and organisation-based interventions in health and health care: a systematic review. Health Technol Assess. 1999;3(5):iii-92.

39. Donner A. The use of correlation and regression in the analysis of family resemblance. Am J Epidemiol. 1979;110:335–42.

40. Rouzi AA, Al-Sibiani SA, Al-Senani NS, Radaddi RM, Ardawi M-SM. Independent predictors of all osteoporosis-related fractures among healthy Saudi postmenopausal women: The CEOR Study. Bone. 2012;50(3):713–22. http://dx.doi.org/10.1016/j.bone.2011.11.024.

41. Feskanich D, Willett W, Colditz G. WAlking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA. 2002;288(18):2300–6. doi: 10.1001/jama.288.18.2300.

42. Dishman RK, DeJoy DM, Wilson MG, Vandenberg RJ. Move to improve: a randomized workplace trial to increase physical activity. Am J Prev Med. 2009;36(2):133–41. http://dx.doi.org/10.1016/j.amepre.2008.09.038.

43. Sternfeld B, Block C, Quesenberry Jr CP, Block TJ, Husson G, Norris JC, et al. Improving diet and physical activity with ALIVE: a worksite randomized trial. Am J Prev Med. 2009;36(6):475–83. http://dx.doi.org/10.1016/j.amepre.2009.01.036.

44. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13(12):1805–13. doi:10.1359/jbmr.1998.13.12.1805.

45. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54. doi:10.1359/jbmr.2002.17.8.1545.

46. Murphy MH, Blair SN, Murtagh EM. Accumulated versus continuous exercise for health benefit. Sports Med. 2009;39(1):29–43. doi:10.2165/00007256-200939010-00003.

47. Macfarlane DJ, Taylor LH, Cuddihy TF. Very short intermittent vs continuous bouts of activity in sedentary adults. Prev Med. 2006;43(4):332–6. http://dx.doi.org/10.1016/j.ypmed.2006.06.002.

48. Gold DT, Shipp KM, Pieper CF, Duncan PW, Martinez S, Lyles KW. Group treatment improves trunk strength and psychological status in older women with vertebral fractures: results of a randomized, clinical trial. J Am Geriatr Soc. 2004;52(9):1471–8. doi:10.1111/j.1532-5415.2004.52409.x.

49. Vainionpää A, Korpelainen R, Leppäluoto J, Jämsä T. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int. 2005;16(2):191–7. doi:10.1007/s00198-004-1659-5.

50. LaMontagne AD. Invited commentary: Job strain and health behaviors—developing a bigger picture. Am J Epidemiol. 2012;176(12):1090–4. doi:10.1093/aje/kws337.

51. Neuhaus M, Healy G, Fjeldsoe B, Lawler S, Owen N, Dunstan D, et al. Iterative development of Stand Up Australia: a multi-component intervention to reduce workplace sitting. Int J Behav Nutr Phys Act. 2014;11(1):21.

Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#