#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Subtle modulation of ongoing calcium dynamics in astrocytic microdomains by sensory inputs


Astrocytes communicate with neurons through their processes. In vitro experiments have demonstrated that astrocytic processes exhibit calcium activity both spontaneously and in response to external stimuli; however, it has not been fully determined whether and how astrocytic subcellular domains respond to sensory input in vivo. We visualized the calcium signals in astrocytes in the primary visual cortex of awake, head‐fixed mice. Bias‐free analyses of two‐photon imaging data revealed that calcium activity prevailed in astrocytic subcellular domains, was coordinated with variable spot‐like patterns, and was dominantly spontaneous. Indeed, visual stimuli did not affect the frequency of calcium domain activity, but it increased the domain size, whereas tetrodotoxin reduced the sizes of spontaneous calcium domains and abolished their visual responses. The “evoked” domain activity exhibited no apparent orientation tuning and was distributed unevenly within the cell, constituting multiple active hotspots that were often also recruited in spontaneous activity. The hotspots existed dominantly in the somata and endfeet of astrocytes. Thus, the patterns of astrocytic calcium dynamics are intrinsically constrained and are subject to minor but significant modulation by sensory input.

Keywords:
Astrocyte, endfoot, map, orientation selectivity, visual cortex.


Autoři: Akiko Asada 1;  Sakiko Ujita 1;  Ryota Nakayama 1;  Shigeyuki Oba 2;  Shin Ishii 2;  Norio Matsuki 1;  Yuji Ikegaya *,1,3
Působiště autorů: Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan 1;  Graduate School of Informatics Kyoto University, Kyoto, Japan 2;  Center for Information and Neural Networks, Suita City Osaka, Japan 3
Vyšlo v časopise: Physiological Reports, 3, 2015, č. 10, s. 1-11
Kategorie: Original Research
prolekare.web.journal.doi_sk: https://doi.org/10.14814/phy2.12454

© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Souhrn

Astrocytes communicate with neurons through their processes. In vitro experiments have demonstrated that astrocytic processes exhibit calcium activity both spontaneously and in response to external stimuli; however, it has not been fully determined whether and how astrocytic subcellular domains respond to sensory input in vivo. We visualized the calcium signals in astrocytes in the primary visual cortex of awake, head‐fixed mice. Bias‐free analyses of two‐photon imaging data revealed that calcium activity prevailed in astrocytic subcellular domains, was coordinated with variable spot‐like patterns, and was dominantly spontaneous. Indeed, visual stimuli did not affect the frequency of calcium domain activity, but it increased the domain size, whereas tetrodotoxin reduced the sizes of spontaneous calcium domains and abolished their visual responses. The “evoked” domain activity exhibited no apparent orientation tuning and was distributed unevenly within the cell, constituting multiple active hotspots that were often also recruited in spontaneous activity. The hotspots existed dominantly in the somata and endfeet of astrocytes. Thus, the patterns of astrocytic calcium dynamics are intrinsically constrained and are subject to minor but significant modulation by sensory input.

Keywords:
Astrocyte, endfoot, map, orientation selectivity, visual cortex.


Zdroje

1. Agulhon, C., T. A. Fiacco, and K. D. McCarthy. 2010. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250– 1254.

2. Bernardinelli, Y., J. Randall, E. Janett, I. Nikonenko, S. Konig, E. V. Jones, et al. 2014. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr. Biol. 24:1679– 1688.

3. Chvatal, A., M. Anderova, M. Hock, I. Prajerova, H. Neprasova, V. Chvatal, et al. 2007. Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J. Neurosci. Res. 85:260–271.

4. Di Castro, M. A., J. Chuquet, N. Liaudet, K. Bhaukaurally, M. Santello, D. Bouvier, et al. 2011. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14:1276–1284.

5. Ding, F., J. O’Donnell, A. S. Thrane, D. Zeppenfeld, H. Kang, L. Xie, et al. 2013. alpha1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394.

6. Fiacco, T. A., C. Agulhon, S. R. Taves, J. Petravicz, K. B. Casper, X. Dong, et al. 2007. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54:611–626.

7. Halassa, M. M., T. Fellin, H. Takano, J. H. Dong, and P. G. Haydon. 2007. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27:6473–6477.

8. Henneberger, C., T. Papouin, S. H. Oliet, and D. A. Rusakov. 2010. Long-term potentiation depends on release of D- serine from astrocytes. Nature 463:232–236.

9. Ishikawa, D., N. Matsumoto, T. Sakaguchi, N. Matsuki, and Y. Ikegaya. 2014. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons. J. Neurosci. 34:5044–5053.

10. Jackson, J. G., J. C. O’Donnell, H. Takano, D. A. Coulter, and M. B. Robinson. 2014. Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. J. Neurosci. 34:1613–1624.

11. Kanemaru, K., H. Sekiya, M. Xu, K. Satoh, N. Kitajima, K. Yoshida, et al. 2014. In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca2+ indicator. Cell Rep. 8:311–318.

12. Lippman Bell, J. J., T. Lordkipanidze, N. Cobb, and A. Dunaevsky. 2010. Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility. Neuron Glia Biol. 6:193–200.

13. Makino, K., K. Funayama, and Y. Ikegaya. 2015. Spatial clusters of constitutively active neurons in mouse visual cortex. Anat. Sci. Int. In press.

14. Minamisawa, G., K. Funayama, N. Matsuki, and Y. Ikegaya. 2011. Intact internal dynamics of the neocortex in acutely paralyzed mice. J. Physiol. Sci. 61:343–348.

15. Mulligan, S. J., and B. A. MacVicar. 2004. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199.

16. Navarrete, M., G. Perea, D. Fernandez de Sevilla, M. Gomez- Gonzalo, A. Nunez, E. D. Martin, et al. 2012. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10:e1001259.

17. Nett, W. J., S. H. Oloff, and K. D. McCarthy. 2002. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87:528–537.

18. Niell, C. M., and M. P. Stryker. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–7536.

19. Nishida, H., and S. Okabe. 2007. Direct astrocytic contacts regulate local maturation of dendritic spines. J. Neurosci. 27:331–340.

20. Palygin, O., U. Lalo, A. Verkhratsky, and Y. Pankratov. 2010. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48:225–231.

21. Panatier, A., J. Vallee, M. Haber, K. K. Murai, J. C. Lacaille, and R. Robitaille. 2011. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798.

22. Parpura, V., T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and P. G. Haydon. 1994. Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747.

23. Paukert, M., A. Agarwal, J. Cha, V. A. Doze, J. U. Kang, and D. E. Bergles. 2014. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82:1263–1270.

24. Pellerin, L., A. K. Bouzier-Sore, A. Aubert, S. Serres, M. Merle, R. Costalat, et al. 2007. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262.

25. Perea, G., M. Navarrete, and A. Araque. 2009. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32:421–431.

26. Petzold, G. C., and V. N. Murthy. 2011. Role of astrocytes in neurovascular coupling. Neuron 71:782–797.

27. Porter, J. T., and K. D. McCarthy. 1996. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16:5073–5081.

28. Rusakov, D. A., D. M. Kullmann, and M. G. Stewart. 1999. Hippocampal synapses: do they talk to their neighbours? Trends Neurosci. 22:382–388.

29. Rusakov, D. A., K. Zheng, and C. Henneberger. 2011. Astrocytes as regulators of synaptic function: a quest for the Ca2+ master key. Neuroscientist 17:513–523.

30. Rusakov, D. A., L. Bard, M. G. Stewart, and C. Henneberger. 2014. Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci. 37:228–242.

31. Schummers, J., H. Yu, and M. Sur. 2008. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643.

32. Shigetomi, E., E. A. Bushong, M. D. Haustein, X. Tong, O. Jackson-Weaver, S. Kracun, et al. 2013. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141:633–647.

33. Sun, M. Y., P. Devaraju, A. X. Xie, I. Holman, E. Samones, T. R. Murphy, et al. 2014. Astrocyte calcium microdomains are inhibited by bafilomycin A1 and cannot be replicated by low-level Schaffer collateral stimulation in situ. Cell Calcium 55:1–16.

34. Takata, N., T. Mishima, C. Hisatsune, T. Nagai, E. Ebisui, K. Mikoshiba, et al. 2011. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticityin vivo. J. Neurosci. 31:18155–18165.

35. Tanaka, M., P. Y. Shih, H. Gomi, T. Yoshida, J. Nakai, R. Ando, et al. 2013. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol. Brain 6:6.

36. Volterra, A., N. Liaudet, and I. Savtchouk. 2014. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15:327–335.

37. Wang, X., N. Lou, Q. Xu, G. F. Tian, W. G. Peng, X. Han, et al. 2006. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–823.

38. Wang, F., N. A. Smith, Q. Xu, T. Fujita, A. Baba, T. Matsuda, et al. 2012. Astrocytes modulate neural network activity by Ca(2)+-dependent uptake of extracellular K+. Sci. Signal. 5: ra26.

39. Winship, I. R., N. Plaa, and T. H. Murphy. 2007. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J. Neurosci. 27:6268–6272.

40. Wu, Y. W., X. Tang, M. Arizono, H. Bannai, P. Y. Shih, Y. Dembitskaya, et al. 2014. Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium 55:119–129.


Článok vyšiel v časopise

Physiological Reports

Číslo 10

2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#