#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Insights from Genomics into Bacterial Pathogen Populations


Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i) within-host evolution, (ii) transmission history, and (iii) population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.


Vyšlo v časopise: Insights from Genomics into Bacterial Pathogen Populations. PLoS Pathog 8(9): e32767. doi:10.1371/journal.ppat.1002874
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002874

Souhrn

Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i) within-host evolution, (ii) transmission history, and (iii) population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.


Zdroje

1. WhitmanWB, ColemanDC, WiebeWJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95: 6578–6583.

2. QinJ, LiR, RaesJ, ArumugamM, BurgdorfKS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.

3. World Health Organization (2008) The global burden of disease: 2004 update. Available: http://www.who.int/healthinfo/global_burden_disease. Accessed 10 August 2012.

4. World Health Organization (2012) Global invasive bacterial vaccine preventable diseases (IB-VPD) information and surveillance bulletin. Volume 5. Available: http://www.who.int/nuvi/surveillance/resources/en/index.html. Accessed 10 August 2012.

5. DaviesJ, DaviesD (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74: 417–433.

6. LivermoreDM (2012) Fourteen years in resistance. Int J Antimicrob Agents 39: 283–294.

7. NordmannP, PoirelL, WalshTR, LivermoreDM (2011) The emerging NDM carbapenemases. Trends Microbiol 19: 588–595.

8. SchmiederR (2012) Insights into antibiotic resistance through metagenomics approaches. Future Microbiol 7: 73–89.

9. MaidenMC, BygravesJA, FeilE, MorelliG, RussellJE, et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95: 3140–3145.

10. UrwinR, MaidenMC (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11: 479–487.

11. GrenfellBT, PybusOG, GogJR, WoodJL, DalyJM, et al. (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303: 327–332.

12. PybusOG, RambautA (2009) Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 10: 540–550.

13. ConnorRI, SheridanKE, CeradiniD, ChoeS, LandauNR (1997) Change in coreceptor use correlates with disease progression in HIV-1–infected individuals. J Exp Med 185: 621–628.

14. LemeyP, Kosakovsky PondSL, DrummondAJ, PybusOG, ShapiroB, et al. (2007) Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLoS Comput Biol 3: e29 doi:10.1371/journal.pcbi.0030029.

15. DrakeJW, CharlesworthB, CharlesworthD, CrowJF (1998) Rates of spontaneous mutation. Genetics 148: 1667–1686.

16. FordCB, LinPL, ChaseMR, ShahRR, IartchoukO, et al. (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43: 482–486.

17. OkoroCK, KingsleyRA, QuailMA, KankwatiraAM, FeaseyNA, et al. (2012) High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin Infect Dis 54: 955–963.

18. McAdamPR, HolmesA, TempletonKE, FitzgeraldJR (2011) Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS ONE 6: e24301 doi:10.1371/journal.pone.0024301.

19. TouzainF, DenamurE, MédigueC, BarbeV, El KarouiM, et al. (2010) Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol 11: R45.

20. OchmanH, WilsonAC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26: 74–86.

21. MoranNA, MunsonMA, BaumannP, IshikawaH (1993) A molecular clock in endosymbiotic bacteria is calibrated using insect hosts. Proc R Soc Lond B 253: 167–171.

22. LenskiRE, WinkworthCL, RileyMA (2003) Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J Mol Evol 56: 498–508.

23. OchmanH (2003) Neutral mutations and neutral substitutions in bacterial genomes. Mol Biol Evol 20: 2091–2096.

24. FalushD, KraftC, TaylorNS, CorreaP, FoxJG, et al. (2001) Recombination and mutation during longterm gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A 98: 15056–15061.

25. Pérez-LosadaM, CrandallKA, ZenilmanJ, ViscidiRP (2007) Temporal trends in gonococcal population genetics in a high prevalence urban community. Infect Genet Evol 7: 271–278.

26. WilsonDJ, GabrielE, LeatherbarrowAJH, CheesbroughJ, GeeS, et al. (2009) Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26: 385–397.

27. YoungBC, GolubchikT, BattyEM, FungR, Larner-SvennsonH, et al. (2012) Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 109: 4550–4555.

28. KennemannL, DidelotX, AebischerT, KuhnS, DrescherB, et al. (2011) Helicobacter pylori evolution during human infection. Proc Natl Acad Sci U S A 108: 5033–5038.

29. McDonaldJH, KreitmanM (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

30. RochaEPC, Maynard SmithJ, HurstLD, HoldenMTG, CooperJE, et al. (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239: 226–235.

31. TurnbaughPJ, LeyRE, HamadyM, Fraser-LiggettCM, KnightR, et al. (2007) The human microbiome project. Nature 449: 804–810.

32. WertheimHF, MellesDC, VosMC, van LeeuwenW, van BelkumA, et al. (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5: 751–762.

33. von EiffC, BeckerK, MachkaK, StammerH, PetersG (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344: 11–16.

34. YangJ, TauschekM, Robins-BrowneRM (2011) Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol 19: 128–135.

35. LiebermanTD, MichelJB, AingaranM, Potter-BynoeG, RouxD, et al. (2011) Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 43: 1275–1280.

36. SmithJM, SmithNH, O'RourkeM, SprattBG (1993) How clonal are bacteria? Proc Natl Acad Sci U S A 90: 4384–4388.

37. WeidenbeckJ, CohanFM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 5: 957–976.

38. HillerNL, AhmedA, PowellE, MartinDP, EutseyR, et al. (2010) Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection. PLoS Pathog 6: e1001108 doi:10.1371/journal.ppat.1001108.

39. BudowleB, SchutzerSE, BreezeRG, KeimPS, MorseSA (2011) editors (2011) Microbial forensics, second edition. Elsevier/Academic Press

40. HarrisSR, FeilEJ, HoldenMTG, QuailMA, NickersonEK, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327: 469–474.

41. GardyJL, JohnstonJC, Ho SuiSJ, CookVJ, ShahL, et al. (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364: 730–739.

42. ReevesPR, LiuB, ZhouZ, LiD, GuoD, et al. (2011) Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PLoS ONE 6: e26907 doi:10.1371/journal.pone.0026907.

43. MorelliG, SongY, MazzoniCJ, EppingerM, RoumagnacP, et al. (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42: 1140–1143.

44. MutrejaA, KimDW, ThomsonNR, ConnorTR, LeeJH, et al. (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462–465.

45. MonotM, HonoréN, GarnierT, ZidaneN, SherafiD, et al. (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41: 1282–1291.

46. MonotM, HonoréN, GarnierT, AraozR, CoppéeJY, et al. (2005) On the origin of leprosy. Science 308: 1040–1042.

47. BosKI, SchuenemannVJ, GoldingGB, BurbanoHA, WaglechnerN, et al. (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478: 506–510.

48. JonesKE, PatelNG, LevyMA, StoreygardA, BalkD, et al. (2008) Global trends in emerging infectious diseases. Nature 451: 990–993.

49. TrumanRW, SinghP, SharmaR, BussoP, RougemontJ, et al. (2011) Probable zoonotic leprosy in the Southern United States. N Engl J Med 364: 1626–1633.

50. MoxonER, JansenVAA (2005) Phage variation: understanding the behaviour of an accidental pathogen. Trends Microbiol 13: 563–565.

51. NandiT, OngC, SinghAP, BoddeyJ, AtkinsT, et al. (2010) A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathog 6: e1000845 doi:10.1371/journal.ppat.1000845.

52. PeacockSJ, MooreCE, JusticeA, KantzanouM, StoryL, et al. (2002) Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 70: 4987–4996.

53. MellesDC, GorkinkRF, BoelensHA, SnijdersSV, PeetersJK, et al. (2004) Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest 114: 1732–1740.

54. DiepBA, CarletonHA, ChangRF, SensabaughGF, Perdreau-RemingtonF (2006) Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J Infect Dis 193: 1495–1503.

55. LindsayJA, MooreCE, DayNP, PeacockSJ, WitneyAA, et al. (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188: 669–676.

56. MalachowaN, DeLeoFR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67: 3057–3071.

57. FredricksDN, RelmanDA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microb Rev 9: 18–33.

58. BeresSB, CarrollRK, SheaPR, SitkiewiczI, Martinez-GutierrezJC, et al. (2010) Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci U S A 107: 4371–4376.

59. SheaPR, BeresSB, FloresAR, EwbankAL, Gonzalez-LugoJH, et al. (2011) Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc Natl Acad Sci U S A 108: 5039–5044.

60. HeM, SebaihiaM, LawleyTD, StablerRA, DawsonLF, et al. (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107: 7527–7532.

61. HarrisSR, ClarkeIN, Seth-SmithHMB, SolomonAW, CutcliffeLT, et al. (2012) Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 44: 413–420.

62. CroucherNJ, HarrisSR, FraserC, QuailMA, BurtonJ, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434.

63. GolubchikT, BrueggemannAB, StreetT, Gertz JrRE, SpencerCCA, et al. (2012) Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet 44: 352–356.

64. ChinCS, SorensonJ, HarrisJB, RobinsWP, CharlesRC, et al. (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364: 33–42.

65. TapperoJW, TauxeRV (2011) Lessons learned during public health response to cholera epidemic in Haiti and the Dominican Republic. Emerg Infect Dis 17: 2087–2093.

66. Centers for Disease Control and Prevention. Press release: laboratory test results of cholera outbreak strain in Haiti announced (1st November 2010).

67. RohdeH, QinJ, CuiY, DongfangL, LomanNJ, et al. (2011) Open-source genomic analysis of shiga-toxin-producing E. coli O104:H4. N Engl J Med 365: 718–724.

68. RaskoDA, WebsterDR, SahlJW, BashirA, BoisenN, et al. (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365: 709–717.

69. EyreDW, GolubchikT, GordonNC, BowdenR, PiazzaP, et al. (2012) A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2: e001124.

70. KöserCU, HoldenMTG, EllingtonMJ, CartwrightEJP, BrownNM, et al. (2012) Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366: 2267–2275.

71. SpencerCCA, SuZ, DonnellyP, MarchiniJ (2009) Designing genome-wide association studies: sample size, power, imputation and the choice of genotyping chip. PLoS Genet 5: e1000477 doi:10.1371/journal.pgen.1000477.

72. PickrellJK, MarioniJC, PaiAA, DegnerJF, EngelhardtBE, et al. (2010) Understanding mechanisms underlying expression variation with RNA sequencing. Nature 464: 768–772.

73. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25: 1754–1760.

74. LunterG, GoodsonM (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21: 936–939.

75. ZerbinoDR, BirneyE (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.

76. IqbalZ, CaccamoM, TurnerI, FlicekP, McVeanG (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet 44: 226–232.

77. ThompsonJD, GibsonTJ, PlewniakF, JeanmouginF, HigginsDG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25: 4876–4882.

78. KurtzS, PhillipyAL, DelcherM, SmootM, ShumwayM, et al. (2004) Versatile and open source software for comparing large genomes. Genome Biol 5: R12.

79. DarlingAE, MauB, PernaNT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS ONE 5: e11147.

80. Benedictow OJ (2004) The Black Death 1346–1353: the complete history. Boydell Press.

81. DenefVJ, BanfieldJF (2012) In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336: 462–466.

82. ChenK, PachterL (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1: e24 doi:10.1371/journal.pcbi.0010024.

83. World Health Organization (2008) Projections of mortality and burden of disease 2004–2030, baseline scenario. Available: http://www.who.int/healthinfo/global_burden_disease/projections/en/index.html. Accessed 12 April 2012.

84. World Health Organization (2011) World Health Organization Mortality Database, ICD-10. 24 November 2011 update. Available: http://www.who.int/whosis/mort/download/en/index.html. Accessed 12 April 2012.

85. GetahunH, GunnebergC, GranichR, NunnP (2010) HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis 50: Suppl 3 S201–S207.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#