#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Copper at the Front Line of the Host-Pathogen Battle


article has not abstract


Vyšlo v časopise: Copper at the Front Line of the Host-Pathogen Battle. PLoS Pathog 8(9): e32767. doi:10.1371/journal.ppat.1002887
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002887

Souhrn

article has not abstract


Zdroje

1. RubinoJT, FranzKJ (2012) Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J Inorg Biochem 107: 129–143.

2. MacomberL, ImlayJA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106: 8344–8349.

3. RaeTD, SchmidtPJ, PufahlRA, CulottaVC, O'HalloranTV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805–808.

4. MunozC, RiosE, OlivosJ, BrunserO, OlivaresM (2007) Iron, copper and immunocompetence. Br J Nutr 98 Suppl 1: S24–S28.

5. WagnerD, MaserJ, MoricI, VogtS, KernWV, et al. (2006) Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 344: 1346–1351.

6. WhiteC, LeeJ, KambeT, FritscheK, PetrisMJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284: 33949–33956.

7. AchardME, StaffordSL, BokilNJ, ChartresJ, BernhardtPV, et al. (2012) Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 444: 51–57.

8. BeveridgeSJ, GarrettIR, WhitehouseMW, Vernon-RobertsB, BrooksPM (1985) Biodistribution of 64Cu in inflamed rats following administration of two anti-inflammatory copper complexes. Agents Actions 17: 104–111.

9. VorugantiVS, KleinGL, LuHX, ThomasS, Freeland-GravesJH, et al. (2005) Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns 31: 711–716.

10. RidgePG, ZhangY, GladyshevVN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3: e1378 doi:10.1371/journal.pone.0001378.

11. WaldronKJ, RobinsonNJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7: 25–35.

12. LynchM, KuramitsuH (2000) Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect 2: 1245–1255.

13. BalasubramanianR, KenneyGE, RosenzweigAC (2011) Dual pathways for copper uptake by methanotrophic bacteria. J Biol Chem 286: 37313–37319.

14. SamanovicMI, DingC, ThieleDJ, DarwinKH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11: 106–115.

15. HodgkinsonV, PetrisMJ (2012) Copper homeostasis at the host-pathogen interface. J Biol Chem 287: 13549–13555.

16. ShafeeqS, YesilkayaH, KloostermanTG, NarayananG, WandelM, et al. (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 81: 1255–1270.

17. BakerJ, SenguptaM, JayaswalRK, MorrisseyJA (2011) The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms. Environ Microbiol 13: 2495–2507.

18. OsmanD, WaldronKJ, DentonH, TaylorCM, GrantAJ, et al. (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285: 25259–25268.

19. AchardME, TreeJJ, HoldenJA, SimpfendorferKR, WijburgOL, et al. (2010) The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78: 2312–2319.

20. LiuT, RameshA, MaZ, WardSK, ZhangL, et al. (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3: 60–68.

21. FestaRA, JonesMB, Butler-WuS, SinsimerD, GeradsR, et al. (2011) A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 79: 133–148.

22. TalaatAM, LyonsR, HowardST, JohnstonSA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101: 4602–4607.

23. WardSK, AbomoelakB, HoyeEA, SteinbergH, TalaatAM (2010) CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77: 1096–1110.

24. WolschendorfF, AckartD, ShresthaTB, Hascall-DoveL, NolanS, et al. (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108: 1621–1626.

25. PalaciosO, AtrianS, CapdevilaM (2011) Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem 16: 991–1009.

26. ReesEM, ThieleDJ (2004) From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 7: 175–184.

27. JungWH, KronstadJW (2008) Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 10: 277–284.

28. WatermanSR, HachamM, HuG, ZhuX, ParkYD, et al. (2007) Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 117: 794–802.

29. DingC, YinJ, TovarEM, FitzpatrickDA, HigginsDG, et al. (2011) The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol Microbiol 81: 1560–1576.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#