#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dual Chaperone Role of the C-Terminal Propeptide in Folding and Oligomerization of the Pore-Forming Toxin Aerolysin


Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function.


Vyšlo v časopise: Dual Chaperone Role of the C-Terminal Propeptide in Folding and Oligomerization of the Pore-Forming Toxin Aerolysin. PLoS Pathog 7(7): e32767. doi:10.1371/journal.ppat.1002135
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002135

Souhrn

Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function.


Zdroje

1. BischofbergerMGonzalezMRvan der GootFG 2009 Membrane injury by pore-forming proteins. Curr Opin Cell Biol 21 589 595

2. IacovacheIvan der GootFGPernotL 2008 Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778 1611 1623

3. AbramiLFivazMDecrolyESeidahNGFrançoisJ 1998 The pore-forming toxin proaerolysin is processed by furin. J Biol Chem 273 32656 32661

4. HowardSPBuckleyJT 1985 Activation of the hole forming toxin aerolysin by extracellular processing. J Bacteriol 163 336 340

5. ParkerMWBuckleyJTPostmaJPMTuckerADLeonardK 1994 Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367 292 295

6. GurcelLIacovacheIvan der GootFG 2005 Aerolysin and related Aeromonas toxins. AloufJEFreerJH The comprehensive sourcebook of bacterial protein toxins (Third Edition) London Elseier 608 622

7. IacovacheIPaumardPScheibHLesieurCSakaiN 2006 A rivet model for channel formation by aerolysin-like pore-forming toxins. Embo J 25 457 466

8. KarplusM 2002 Molecular dynamics simulations of biomolecules. Acc Chem Res 35 321 323

9. AksimentievASchultenK 2005 Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88 3745 3761

10. MatheJAksimentievANelsonDRSchultenKMellerA 2005 Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci U S A 102 12377 12382

11. BuckleyJTWilmsenHULesieurCSchultzeAPattusF 1995 Protonation of His-132 promotes oligomerization of the channel-forming toxin Aerolysin. Biochemistry 34 16450 16455

12. PernotLSchiltzMvan der GootFG 2010 Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1626 1630

13. van der GootFGHardieKRParkerMWBuckleyJT 1994 The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. J Biol Chem 269 30496 30501

14. LesieurCFrutigerSHughesGKellnerRPattusF 1999 Increased stability upon heptamerization of the pore-forming toxin aerolysin. J Biol Chem 274 36722 36728

15. MeszarosBTompaPSimonIDosztanyiZ 2007 Molecular principles of the interactions of disordered proteins. J Mol Biol 372 549 561

16. van der GootFGLakeyJHPattusFKayCMSorokineO 1992 Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: Identification of the site of proteolytic activation. Biochemistry 31 8566 8570

17. SellmanBRTwetenRK 1997 The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin- dependent cytolysis. Mol Microbiol 25 429 440

18. ChenYJInouyeM 2008 The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 18 765 770

19. IkemuraHTakagiHInouyeM 1987 Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262 7859 7864

20. OhnishiYHorinouchiS 1996 Extracellular production of a Serratia marcescens serine protease in Escherichia coli. Biosci Biotechnol Biochem 60 1551 1558

21. UellnerRZvelebilMJHopkinsJJonesJMacDougallLK 1997 Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 16 7287 7296

22. RozenfeldRMullerLEl MessariSLlorens-CortesC 2004 The C-terminal domain of aminopeptidase A is an intramolecular chaperone required for the correct folding, cell surface expression, and activity of this monozinc aminopeptidase. J Biol Chem 279 43285 43295

23. JacobRPurschelBNaimHY 2002 Sucrase is an intramolecular chaperone located at the C-terminal end of the sucrase-isomaltase enzyme complex. J Biol Chem 277 32141 32148

24. MaBKumarSTsaiCJNussinovR 1999 Folding funnels and binding mechanisms. Protein Eng 12 713 720

25. TsaiCJMaBNussinovR 1999 Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96 9970 9972

26. KumarSMaBTsaiCJSinhaNNussinovR 2000 Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9 10 19

27. CaseDACheathamTE3rdDardenTGohlkeHLuoR 2005 The Amber biomolecular simulation programs. J Comput Chem 26 1668 1688

28. PhillipsJCBraunRWangWGumbartJTajkhorshidE 2005 Scalable molecular dynamics with NAMD. J Comput Chem 26 1781 1802

29. BatchoPFCaseDASchlickT 2001 Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J Chem Phys 115 4003 4018

30. HumphreyWDalkeASchultenK 1996 VMD: visual molecular dynamics. J Mol Graph 14 33 38, 27–38

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#