C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7


Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs.


Vyšlo v časopise: C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7. PLoS Pathog 7(7): e32767. doi:10.1371/journal.ppat.1002164
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002164

Souhrn

Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs.


Zdroje

1. KieffERickinsonAB 2007 Epstein-Barr Virus and its replication. KnipeDHowleyP Fields Virology, 5th edition. 5th ed Philadelphia Lippincott 2603 2654

2. CrawfordDH 2001 Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356 461 473

3. RoweMRoweDTGregoryCDYoungLSFarrellPJ 1987 Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6 2743 2751

4. LeeMADiamondMEYatesJL 1999 Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J Virol 73 2974 2982

5. CohenJIWangFMannickJKieffE 1989 Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86 9558 9562

6. HammerschmidtWSugdenB 1989 Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340 393 397

7. TomkinsonBRobertsonEKieffE 1993 Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67 2014 2025

8. KayeKMIzumiKMKieffE 1993 Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90 9150 9154

9. MannickJBCohenJIBirkenbachMMarchiniAKieffE 1991 The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65 6826 6837

10. KimOJYatesJL 1993 Mutants of Epstein-Barr virus with a selective marker disrupting the TP gene transform B cells and replicate normally in culture. J Virol 67 7634 7640

11. LongneckerRMillerCLMiaoXQTomkinsonBKieffE 1993 The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol 67 2006 2013

12. AdldingerHKDeliusHFreeseUKClarkeJBornkammGW 1985 A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology 141 221 234

13. DambaughTHennessyKChamnankitLKieffE 1984 U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci U S A 81 7632 7636

14. SampleJYoungLMartinBChatmanTKieffE 1990 Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol 64 4084 4092

15. RoweMYoungLSCadwalladerKPettiLKieffE 1989 Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J Virol 63 1031 1039

16. PengRGordadzeAVFuentes PananaEMWangFZongJ 2000 Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74 379 389

17. McCannEMKellyGLRickinsonABBellAI 2001 Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 82 3067 3079

18. YoungLSYaoQYRooneyCMSculleyTBMossDJ 1987 New type B isolates of Epstein-Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J Gen Virol 68 Pt 11 2853 2862

19. RickinsonABYoungLSRoweM 1987 Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol 61 1310 1317

20. RoweMYoungLSCrockerJStokesHHendersonS 1991 Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 173 147 158

21. CohenJIPicchioGRMosierDE 1992 Epstein-Barr virus nuclear protein 2 is a critical determinant for tumor growth in SCID mice and for transformation in vitro. J Virol 66 7555 7559

22. CrawfordDHMacsweenKFHigginsCDThomasRMcAulayK 2006 A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 43 276 282

23. SpenderLCLucchesiWBodelonGBilancioAKarsteglCE 2006 Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol 87 2859 2867

24. ZhaoBMaruoSCooperAMRCJohannsenE 2006 RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 103 1900 1905

25. MaierSStafflerGHartmannAHockJHenningK 2006 Cellular target genes of Epstein-Barr virus nuclear antigen 2. J Virol 80 9761 9771

26. LucchesiWBradyGDittrich-BreiholzOKrachtMRussR 2008 Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2. J Virol 82 7456 7466

27. SinclairAJPalmeroIPetersGFarrellPJ 1994 EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13 3321 3328

28. HaradaSKieffE 1997 Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71 6611 6618

29. NitscheFBellARickinsonA 1997 Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71 6619 6628

30. PengRMosesSCTanJKremmerELingPD 2005 The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 79 4492 4505

31. PengCWXueYZhaoBJohannsenEKieffE 2004 Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci U S A 101 1033 1038

32. LingPDRyonJJHaywardSD 1993 EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol 67 2990 3003

33. HaradaSYalamanchiliRKieffE 2001 Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol 75 2482 2487

34. TsuiSSchubachWH 1994 Epstein-Barr virus nuclear protein 2A forms oligomers in vitro and in vivo through a region required for B-cell transformation. J Virol 68 4287 4294

35. LingPDRawlinsDRHaywardSD 1993 The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A 90 9237 9241

36. ZhouSFujimuroMHsiehJJChenLHaywardSD 2000 A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol 74 1939 1947

37. PengCWZhaoBKieffE 2004 Four EBNA2 domains are important for EBNALP coactivation. J Virol 78 11439 11442

38. CohenJIWangFKieffE 1991 Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol 65 2545 2554

39. GordadzeAVOnunworCWPengRPostonDKremmerE 2004 EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance. J Virol 78 3919 3929

40. GrabusicKMaierSHartmannAMantikAHammerschmidtW 2006 The CR4 region of EBNA2 confers viability of Epstein-Barr virus-transformed B cells by CBF1-independent signalling. J Gen Virol 87 3169 3176

41. YalamanchiliRHaradaSKieffE 1996 The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. J Virol 70 2468 2473

42. GordadzeAVPostonDLingPD 2002 The EBNA2 polyproline region is dispensable for Epstein-Barr virus-mediated immortalization maintenance. J Virol 76 7349 7355

43. YalamanchiliRTongXGrossmanSJohannsenEMosialosG 1994 Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204 634 641

44. TongXYalamanchiliRHaradaSKieffE 1994 The EBNA-2 arginine-glycine domain is critical but not essential for B-lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. J Virol 68 6188 6197

45. HenkelTLingPDHaywardSDPetersonMG 1994 Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265 92 95

46. JohannsenEKohEMosialosGTongXKieffE 1995 Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol 69 253 262

47. LauxGAdamBStroblLJMoreau-GachelinF 1994 The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J 13 5624 5632

48. SjoblomAJanssonAYangWLainSNilssonT 1995 PU box-binding transcription factors and a POU domain protein cooperate in the Epstein-Barr virus (EBV) nuclear antigen 2-induced transactivation of the EBV latent membrane protein 1 promoter. J Gen Virol 76 Pt 11 2679 2692

49. JanssonAJohanssonPYangWPalmqvistLSjoblom-HallenA 2007 Role of a consensus AP-2 regulatory sequence within the Epstein-Barr virus LMP1 promoter in EBNA2 mediated transactivation. Virus Genes 35 203 214

50. Fuentes-PananaEMPengRBrewerGTanJLingPD 2000 Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol 74 8166 8175

51. TongXDrapkinRReinbergDKieffE 1995 The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 92 3259 3263

52. TongXWangFThutCJKieffE 1995 The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69 585 588

53. TongXDrapkinRYalamanchiliRMosialosGKieffE 1995 The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15 4735 4744

54. WangLGrossmanSRKieffE 2000 Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97 430 435

55. WuDYKalpanaGVGoffSPSchubachWH 1996 Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol 70 6020 6028

56. KwiatkowskiBChenSYSchubachWH 2004 CKII site in Epstein-Barr virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for growth transformation. J Virol 78 6067 6072

57. BodescotMChambraudBFarrellPPerricaudetM 1984 Spliced RNA from the IR1-U2 region of Epstein-Barr virus: presence of an open reading frame for a repetitive polypeptide. EMBO J 3 1913 1917

58. SampleJHummelMBraunDBirkenbachMKieffE 1986 Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci U S A 83 5096 5100

59. SpeckSHPfitznerAStromingerJL 1986 An Epstein-Barr virus transcript from a latently infected, growth-transformed B-cell line encodes a highly repetitive polypeptide. Proc Natl Acad Sci U S A 83 9298 9302

60. PengRTanJLingPD 2000 Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 74 9953 9963

61. YooLIMooneyMPuglielliMTSpeckSH 1997 B-cell lines immortalized with an Epstein-Barr virus mutant lacking the Cp EBNA2 enhancer are biased toward utilization of the oriP-proximal EBNA gene promoter Wp1. J Virol 71 9134 9142

62. KilgerEKieserABaumannMHammerschmidtW 1998 Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17 1700 1709

63. SjoblomAYangWPalmqvistLJanssonARymoL 1998 An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein-Barr virus LMP1 gene promoter. J Virol 72 1365 1376

64. FahraeusRJanssonARickstenASjoblomARymoL 1990 Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc Natl Acad Sci U S A 87 7390 7394

65. CohenJIKieffE 1991 An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65 5880 5885

66. WangFKikutaniHTsangSFKishimotoTKieffE 1991 Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol 65 4101 4106

67. WangFTsangSFKurillaMGCohenJIKieffE 1990 Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64 3407 3416

68. FredrikssonRLagerstromMCLundinLGSchiothHB 2003 The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63 1256 1272

69. JoostPMethnerA 2002 Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 3 RESEARCH0063

70. BalabanianKLaganeBInfantinoSChowKYHarriagueJ 2005 The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280 35760 35766

71. BurnsJMSummersBCWangYMelikianABerahovichR 2006 A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203 2201 2213

72. ThelenMThelenS 2008 CXCR7, CXCR4 and CXCL12: an eccentric trio? J Neuroimmunol 198 9 13

73. HartmannTNGrabovskyVPasvolskyRShulmanZBussEC 2008 A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 84 1130 1140

74. Dambly-ChaudiereCCubedoNGhysenA 2007 Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7 23

75. BoldajipourBMahabaleshwarHKardashEReichman-FriedMBlaserH 2008 Control of chemokine-guided cell migration by ligand sequestration. Cell 132 463 473

76. InfantinoSMoeppsBThelenM 2006 Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J Immunol 176 2197 2207

77. LevoyeABalabanianKBaleuxFBachelerieFLaganeB 2009 CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113 6085 6093

78. JinZNagakuboDShirakawaAKNakayamaTShigetaA 2009 CXCR7 is inducible by HTLV-1 Tax and promotes growth and survival of HTLV-1-infected T cells. Int J Cancer 125 2229 2235

79. RaggoCRuhlRMcAllisterSKoonHDezubeBJ 2005 Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 65 5084 5095

80. MiaoZLukerKESummersBCBerahovichRBhojaniMS 2007 CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A 104 15735 15740

81. WangJShiozawaYWangYJungYPientaKJ 2008 The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283 4283 4294

82. MeijerJOginkJRoosE 2008 Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo. Br J Cancer 99 1493 1501

83. JonesMDFosterLSheedyTGriffinBE 1984 The EB virus genome in Daudi Burkitt's lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO J 3 813 821

84. PicardDSalserSJYamamotoKR 1988 A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54 1073 1080

85. JeangKTHaywardSD 1983 Organization of the Epstein-Barr virus DNA molecule. III. Location of the P3HR-1 deletion junction and characterization of the NotI repeat units that form part of the template for an abundant 12-O-tetradecanoylphorbol-13-acetate-induced mRNA transcript. J Virol 48 135 148

86. KempkesBSpitkovskyDJansen-DurrPEllwartJWKremmerE 1995 B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14 88 96

87. RingCJJonesMDGriffinBE 1992 Alternative splicing determines the carboxy terminus of the Epstein-Barr virus nuclear antigen 5 species expressed in the Burkitt's lymphoma cell line Daudi. J Gen Virol 73 Pt 10 2715 2719

88. GaribalJHollvilleEBellAIKellyGLRenoufB 2007 Truncated form of the Epstein-Barr virus protein EBNA-LP protects against caspase-dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 81 7598 7607

89. ShakuFMatsudaGFuruyaRKamagataCIgarashiM 2005 Development of a monoclonal antibody against Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) that can detect EBNA-LP expressed in P3HR1 cells. Microbiol Immunol 49 477 483

90. WangFPettiLBraunDSeungSKieffE 1987 A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol 61 945 954

91. RoweDTFarrellPJMillerG 1987 Novel nuclear antigens recognized by human sera in lymphocytes latently infected by Epstein-Barr virus. Virology 156 153 162

92. FinkeJRoweMKallinBErnbergIRosenA 1987 Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J Virol 61 3870 3878

93. RooneyCHoweJGSpeckSHMillerG 1989 Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. J Virol 63 1531 1539

94. AllanGJRoweDT 1989 Size and stability of the Epstein-Barr virus major internal repeat (IR-1) in Burkitt's lymphoma and lymphoblastoid cell lines. Virology 173 489 498

95. PiovanEToselloVIndraccoloSCabrelleABaessoI 2005 Chemokine receptor expression in EBV-associated lymphoproliferation in hu/SCID mice: implications for CXCL12/CXCR4 axis in lymphoma generation. Blood 105 931 939

96. NakayamaTFujisawaRIzawaDHieshimaKTakadaK 2002 Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol 76 3072 3077

97. Ehlin-HenrikssonBMowafiFKleinGNilssonA 2006 Epstein-Barr virus infection negatively impacts the CXCR4-dependent migration of tonsillar B cells. Immunology 117 379 385

98. AiutiATavianMCipponiAFicaraFZapponeE 1999 Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 29 1823 1831

99. PettiLSampleCKieffE 1990 Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176 563 574

100. RabsonMGradovilleLHestonLMillerG 1982 Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J Virol 44 834 844

101. MosesAVJarvisMARaggoCBellYCRuhlR 2002 Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 76 8383 8399

102. PooleLJYuYKimPSZhengQZPevsnerJ 2002 Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi's sarcoma-associated herpesvirus. J Virol 76 3395 3420

103. MattaHSurabhiRMZhaoJPunjVSunQ 2007 Induction of spindle cell morphology in human vascular endothelial cells by human herpesvirus 8-encoded viral FLICE inhibitory protein K13. Oncogene 26 1656 1660

104. SierroFBibenCMartinez-MunozLMelladoMRansohoffRM 2007 Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 104 14759 14764

105. NaumannUCameroniEPruensterMMahabaleshwarHRazE 2010 CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5 e9175

106. HertleMLPoppCPetermannSMaierSKremmerE 2009 Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLoS Pathog 5 e1000506

107. ChenAZhaoBKieffEAsterJCWangF 2006 EBNA-3B- and EBNA-3C-regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 80 10139 10150

108. WhiteREGrovesIJTurroEYeeJKremmerE 2010 Extensive co-operation between the Epstein-Barr virus EBNA3 proteins in the manipulation of host gene expression and epigenetic chromatin modification. PLoS One 5 e13979

109. ZhaoBMarJCMaruoSLeeSGewurzBE 2011 Epstein-Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 108 337 342

110. PortalDRosendorffAKieffE 2006 Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci U S A 103 19278 19283

111. HinumaYKonnMYamaguchiJWudarskiDJBlakesleeJRJr 1967 Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol 1 1045 1051

112. EpsteinMAAchongBGBarrYMZajacBHenleG 1966 Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst 37 547 559

113. KleinEKleinGNadkarniJSNadkarniJJWigzellH 1968 Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res 28 1300 1310

114. SugdenBWarrenN 1989 A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 63 2644 2649

115. KempkesBZimber-StroblUEissnerGPawlitaMFalkM 1996 Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol 77 Pt 2 227 237

116. AllanGJInmanGJParkerBDRoweDTFarrellPJ 1992 Cell growth effects of Epstein-Barr virus leader protein. J Gen Virol 73 Pt 6 1547 1551

117. DelecluseHJHilsendegenTPichDZeidlerRHammerschmidtW 1998 Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95 8245 8250

118. WhiteRECalderwoodMAWhitehouseA 2003 Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. J Gen Virol 84 3393 3403

119. DolanAAddisonCGathererDDavisonAJMcGeochDJ 2006 The genome of Epstein-Barr virus type 2 strain AG876. Virology 350 164 170

120. GregorovicGBosshardRKarsteglCEWhiteREPattleS 2011 Cell gene expression correlating with EBER expression in Epstein-Barr virus infected lymphoblastoid cell lines. J Virol 85 3535 45

121. DirmeierUNeuhierlBKilgerEReisbachGSandbergML 2003 Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 63 2982 2989

122. NeuhierlBFeederleRHammerschmidtWDelecluseHJ 2002 Glycoprotein gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection. Proc Natl Acad Sci U S A 99 15036 15041

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa