#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)


The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.


Vyšlo v časopise: Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2). PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000918
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000918

Souhrn

The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.


Zdroje

1. World Health Organization 2009 Fact sheet Number 211. Influenza. URL http://www.who.int/mediacentre/factsheets/fs211/en/

2. NelsonMI

SimonsenL

ViboudC

MillerMA

HolmesEC

2007 Phylogenetic analysis reveals the global migration of seasonal influenza A viruses. PLoS Pathog 3 1220 1228

3. RussellCA

JonesTC

BarrIG

CoxNJ

GartenRJ

2008 The global circulation of seasonal influenza A (H3N2) viruses. Science 320 340 346

4. RambautA

PybusOG

NelsonMI

ViboudC

TaubenbergerJK

2008 The genomic and epidemiological dynamics of human influenza A virus. Nature 453 615 619

5. FergusonNM

GalvaniAP

BushRM

2003 Ecological and immunological determinants of influenza evolution. Nature 422 428 433

6. CargillM

AltshulerD

IrelandJ

SklarP

ArdlieK

1999 Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22 231 238

7. BrownAJ

1997 Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci U S A 94 1862 1865

8. NelsonMI

SimonsenL

ViboudC

MillerMA

TaylorJ

2006 Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog 2 e125

9. HudsonRR

SlatkinM

MaddisonWP

1992 Estimation of levels of gene flow from DNA sequence data. Genetics 132 583 589

10. ShriverMD

MeiR

ParraEJ

SonparV

HalderI

2005 Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum Genomics 2 81 89

11. KingmanJFC

1982 The coalescent. Stochast Proc Appl 13 235 248

12. NotoharaM

1990 The coalescent and the genealogical process in geographically structured population. J Math Biol 29 59 75

13. DrummondAJ

NichollsGK

RodrigoAG

SolomonW

2002 Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161 1307 1320

14. BeerliP

FelsensteinJ

2001 Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98 4563 4568

15. HufnagelL

BrockmannD

GeiselT

2004 Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A 101 15124 15129

16. FitchWM

BushRM

BenderCA

CoxNJ

1997 Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94 7712 7718

17. NelsonMI

HolmesEC

2007 The evolution of epidemic influenza. Nat Rev Genet 8 196 205

18. KoelleK

CobeyS

GrenfellB

PascualM

2006 Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314 1898 1903

19. WolfYI

ViboudC

HolmesEC

KooninEV

LipmanDJ

2006 Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1 34

20. BeerliP

2006 Comparison of bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22 341 345

21. MaruyamaT

KimuraM

1980 Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A 77 6710 6714

22. BaoY

BolotovP

DernovoyD

KiryutinB

ZaslavskyL

2008 The influenza virus resource at the national center for biotechnology information. J Virol 82 596 601

23. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

24. DrummondAJ

RambautA

2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7 214

25. HasegawaM

KishinoH

YanoT

1985 Dating of the human-ape splitting by a molecular clock of mitochondrial dna. J Mol Evol 22 160 174

26. GaniR

HughesH

FlemingD

GriffinT

MedlockJ

2005 Potential impact of antiviral drug use during influenza pandemic. Emerg Infect Dis 11 1355 1362

27. CauchemezS

ValleronAJ

BoellePY

FlahaultA

FergusonNM

2008 Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452 750 754

28. CarratF

VerguE

FergusonNM

LemaitreM

CauchemezS

2008 Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 167 775 785

29. SmithDJ

LapedesAS

de JongJC

BestebroerTM

RimmelzwaanGF

2004 Mapping the antigenic and genetic evolution of influenza virus. Science 305 371 376

30. BorgattiS

2005 Centrality and network flow. Social Networks 27 55 71

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#