#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Complex Small RNA Repertoire Is Generated by a Plant/Fungal-Like Machinery and Effected by a Metazoan-Like Argonaute in the Single-Cell Human Parasite


In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other apicomplexans. This study establishes Toxoplasma as a unique model system for studying the evolution and molecular mechanisms of RNA silencing among eukaryotes.


Vyšlo v časopise: A Complex Small RNA Repertoire Is Generated by a Plant/Fungal-Like Machinery and Effected by a Metazoan-Like Argonaute in the Single-Cell Human Parasite. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000920
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000920

Souhrn

In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other apicomplexans. This study establishes Toxoplasma as a unique model system for studying the evolution and molecular mechanisms of RNA silencing among eukaryotes.


Zdroje

1. MillerCM

BoulterNR

IkinRJ

SmithNC

2009 The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 39 23 39

2. BladerIJ

SaeijJP

2009 Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117 458 76

3. SullivanWJJr

SmithAT

JoyceBR

2009 Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review. Mem Inst Oswaldo Cruz 104 155 161

4. HakimiMA

DeitschKW

2007 Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr Opin Microbiol 10 357 362

5. IyerLM

AnantharamanV

WolfMY

AravindL

2008 Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38 1 31

6. SullivanWJJr

HakimiMA

2006 Histone mediated gene activation in Toxoplasma gondii. Mol Biochem Parasitol 148 109 116

7. BougdourA

SautelCF

CannellaD

BraunL

HakimiMA

2008 Toxoplasma gondii gene expression is under the control of regulatory pathways acting through chromatin structure. Parasite 3 206 210

8. HannonGJ

2002 RNA interference. Nature 418 244 251

9. MeisterG

TuschlT

2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343 349

10. BartelDP

2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281 297

11. LippmanZ

MartienssenR

2004 The role of RNA interference in heterochromatic silencing. Nature 431 364 370

12. MochizukiK

GorovskyMA

2004 Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14 181 187

13. YaoMC

ChaoJL

2005 RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39 537 559

14. LeeSR

CollinsK

2006 Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev 20 28 33

15. ZhaoT

LiG

MiS

LiS

HannonGJ

2007 A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21 1190 1203

16. MolnárA

SchwachF

StudholmeDJ

ThuenemannEC

BaulcombeDC

2007 miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447 1126 1129

17. BaumJ

PapenfussAT

MairGR

JanseCJ

VlachouD

2009 Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res 37 3788 3798

18. CeruttiH

Casas-MollanoJA

2006 On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50 81 99

19. GajriaB

BahlA

BrestelliJ

DommerJ

FischerS

2008 ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36 D553 D556

20. YigitE

BatistaPJ

BeiY

PangKM

ChenCC

2006 Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127 747 757

21. MaJB

YuanYR

MeisterG

PeiY

TuschlT

2005 Structural basis for 5′-endspecific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434 666 670

22. ParkerJS

RoeSM

BarfordD

2005 Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434 663 666

23. KirinoY

KimN

de Planell-SaguerM

KhandrosE

ChioreanS

2009 Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11 652 658

24. KirinoY

VourekasA

SayedN

de Lima AlvesF

ThomsonT

2010 Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16(1) 70 78

25. VaginVV

WohlschlegelJ

QuJ

JonssonZ

HuangX

2009 Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15) 1749 1762

26. ZongJ

YaoX

YinJ

ZhangD

MaH

2009 Evolution of the RNA-dependent RNA polymerase (RdRP) genes: Duplications and possible losses before and after the divergence of major eukaryotic groups. Gene 447 29 39

27. KeelingPJ

2009 Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56(1) 1 8

28. LauNC

LimLP

WeinsteinEG

BartelDP

2001 An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294 858 862

29. AravinA

TuschlT

2005 Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579 5830 5840

30. DjupedalI

PortosoM

SpåhrH

BonillaC

GustafssonCM

AllshireRC

EkwallK

2005 RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 19(19) 2301 2306

31. LiuQ

RandTA

KalidasS

DuF

KimHE

2003 R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301 1921 1925

32. MacraeIJ

ZhouK

LiF

RepicA

BrooksAN

2006 Structural basis for double-stranded RNA processing by Dicer. Science 311 195 198

33. MacRaeIJ

ZhouK

DoudnaJA

2007 Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14 934 940

34. LimLP

LauNC

WeinsteinEG

AbdelhakimA

YektaS

2003 The microRNAs of Caenorhabditis elegans. Genes Dev 17(8) 991 1008

35. FelippesFF

SchneebergerK

DezulianT

HusonDH

WeigelD

2008 Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14(12) 2455 2459

36. YuB

YangZ

LiJ

MinakhinaS

YangM

2005 Methylation as a crucial step in plant microRNA biogenesis. Science 307 932 935

37. YangZ

EbrightYW

YuB

ChenX

2006 HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34 667 675

38. LuS

SunYH

ChiangVL

2009 Adenylation of plant miRNAs. Nucleic Acids Res 37 1878 1885

39. HöckJ

WeinmannL

EnderC

RüdelS

KremmerE

2007 Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8 1052 1060

40. LandthalerM

GaidatzisD

RothballerA

ChenPY

SollSJ

2008 Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14 2580 2596

41. LanetE

DelannoyE

SormaniR

FlorisM

BrodersenP

2009 Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. Plant Cell 21 1762 1768

42. VaucheretH

2005 MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005(300) pe43

43. SibleyLD

KhanA

AjiokaJW

RosenthalBM

2009 Genetic diversity of Toxoplasma gondii in animals and humans. Philos Trans R Soc Lond B Biol Sci 364(1530) 2749 2761

44. WinterJ

JungS

KellerS

GregoryRI

DiederichsS

2009 Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3) 228 234

45. HeoI

JooC

ChoJ

HaM

HanJ

KimVN

2008 Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32 276 284

46. ViswanathanSR

DaleyGQ

GregoryRI

2008 Selective blockade of microRNA processing by Lin28. Science 320 97 100

47. TrabucchiM

BriataP

Garcia-MayoralM

HaaseAD

FilipowiczW

RamosA

GherziR

RosenfeldMG

2009 The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249) 1010 1014

48. WangY

JuranekS

LiH

ShengG

TuschlT

PatelDJ

2008 Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456 921 926

49. WangY

JuranekS

LiH

ShengG

WardleGS

TuschlT

PatelDJ

2009 Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461 754 761

50. BrodersenP

VoinnetO

2009 Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10(2) 141 148

51. Al RiyahiA

Al-AnoutiF

Al-RayesM

AnanvoranichS

2006 Single argonaute protein from Toxoplasma gondii is involved in the double-stranded RNA induced gene silencing. Int J Parasitol 36(9) 1003 1014

52. OssorioPN

SibleyLD

BoothroydJC

1991 Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii. J Mol Biol 222 525 536

53. PiriyapongsaJ

JordanIK

2007 A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2(2) e203

54. PiriyapongsaJ

JordanIK

2008 Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5) 814 821

55. ClementeM

de MiguelN

LiaVV

MatrajtM

AngelSO

2004 Structure analysis of two Toxoplasma gondii and Neospora caninum satellite DNA families and evolution of their common monomeric sequence. J Mol Evol 58 557 567

56. XieZ

JohansenLK

GustafsonAM

KasschauKD

LellisAD

ZilbermanD

JacobsenSE

CarringtonJC

2004 Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5) e104

57. MatzkeM

KannoT

DaxingerL

HuettelB

MatzkeAJ

2009 RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21 367 376

58. OlsenPH

AmbrosV

1999 The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216 671 680

59. DjikengA

ShiH

TschudiC

ShenS

UlluE

2003 An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9 802 808

60. KimJ

KrichevskyA

GradY

HayesGD

KosikKS

2004 Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101 360 365

61. MaroneyPA

YuY

FisherJ

NilsenTW

2006 Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13 1102 1107

62. NottrottS

SimardMJ

RichterJD

2006 Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13 1108 1114

63. LeeJ

ThompsonJR

BotuyanMV

MerG

2008 Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol 15 109 111

64. FribergA

CorsiniL

MourãoA

SattlerM

2009 Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J Mol Biol 387(4) 921 934

65. CaudyAA

KettingRF

HammondSM

DenliAM

BathoornAM

2003 A micrococcal nuclease homologue in RNAi effector complexes. Nature 425 411 414

66. ShiH

UlluE

TschudiC

2004 Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J Biol Chem 279 49889 49893

67. ChuCY

RanaTM

2006 Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4(7) e210

68. ZhouR

HottaI

DenliAM

HongP

PerrimonN

2008 Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol Cell 32 592 599

69. CourchetJ

Buchet-PoyauK

PotemskiA

BrèsA

Jariel-EncontreI

2008 Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J Biol Chem 283 32131 32142

70. FabianMR

MathonnetG

SundermeierT

MathysH

ZipprichJT

SvitkinYV

RivasF

JinekM

WohlschlegelJ

DoudnaJA

ChenCY

ShyuAB

YatesJR3rd

HannonGJ

FilipowiczW

DuchaineTF

SonenbergN

2009 Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35(6) 868 80

71. StoicaC

CarmichaelJB

ParkerH

PareJ

HobmanTC

2006 Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression. J Biol Chem 281 37646 37651

72. KatoH

GotoDB

MartienssenRA

UranoT

FurukawaK

2005 RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309 467 469

73. FischerT

CuiB

DhakshnamoorthyJ

ZhouM

RubinC

ZofallM

VeenstraTD

GrewalSI

2009 Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci U S A 106 8998 9003

74. WhiteSA

AllshireRC

2008 RNAi-mediated chromatin silencing in fission yeast. Curr Top Microbiol Immunol 320 157 183

75. SaksoukN

BhattiMM

KiefferS

SmithAT

MussetK

2005 Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25 10301 10314

76. BougdourA

MaubonD

BaldacciP

OrtetP

BastienO

2009 Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med 206 953 966

77. SautelCF

CannellaD

BastienO

KiefferS

AldebertD

2007 SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 27 5711 5724

78. BraunL

CannellaD

PinheiroAM

KiefferS

BelrhaliH

GarinJ

HakimiMA

2009 The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii. Int J Parasitol 39 81 90

79. SautelCF

OrtetP

SaksoukN

KiefferS

GarinJ

2009 The histone methylase KMTox interacts with the redox-sensor peroxiredoxin-1 and targets genes involved in Toxoplasma gondii antioxidant defences. Mol Microbiol 71 212 226

80. HofackerIL

FontanaW

StadlerPF

BonhoefferLS

TackerM

1994 Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125 167 188

81. ZukerM

2003 Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31 3406 3415

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#