#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structural Basis of Cell Wall Cleavage by a Staphylococcal Autolysin


The major autolysins (Atl) of Staphylococcus epidermidis and S. aureus play an important role in cell separation, and their mutants are also attenuated in virulence. Therefore, autolysins represent a promising target for the development of new types of antibiotics. Here, we report the high-resolution structure of the catalytically active amidase domain AmiE (amidase S. epidermidis) from the major autolysin of S. epidermidis. This is the first protein structure with an amidase-like fold from a bacterium with a gram-positive cell wall architecture. AmiE adopts a globular fold, with several α-helices surrounding a central β-sheet. Sequence comparison reveals a cluster of conserved amino acids that define a putative binding site with a buried zinc ion. Mutations of key residues in the putative active site result in loss of activity, enabling us to propose a catalytic mechanism. We also identified and synthesized muramyltripeptide, the minimal peptidoglycan fragment that can be used as a substrate by the enzyme. Molecular docking and digestion assays with muramyltripeptide derivatives allow us to identify key determinants of ligand binding. This results in a plausible model of interaction of this ligand not only for AmiE, but also for other PGN-hydrolases that share the same fold. As AmiE active-site mutations also show a severe growth defect, our findings provide an excellent platform for the design of specific inhibitors that target staphylococcal cell separation and can thereby prevent growth of this pathogen.


Vyšlo v časopise: Structural Basis of Cell Wall Cleavage by a Staphylococcal Autolysin. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000807
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000807

Souhrn

The major autolysins (Atl) of Staphylococcus epidermidis and S. aureus play an important role in cell separation, and their mutants are also attenuated in virulence. Therefore, autolysins represent a promising target for the development of new types of antibiotics. Here, we report the high-resolution structure of the catalytically active amidase domain AmiE (amidase S. epidermidis) from the major autolysin of S. epidermidis. This is the first protein structure with an amidase-like fold from a bacterium with a gram-positive cell wall architecture. AmiE adopts a globular fold, with several α-helices surrounding a central β-sheet. Sequence comparison reveals a cluster of conserved amino acids that define a putative binding site with a buried zinc ion. Mutations of key residues in the putative active site result in loss of activity, enabling us to propose a catalytic mechanism. We also identified and synthesized muramyltripeptide, the minimal peptidoglycan fragment that can be used as a substrate by the enzyme. Molecular docking and digestion assays with muramyltripeptide derivatives allow us to identify key determinants of ligand binding. This results in a plausible model of interaction of this ligand not only for AmiE, but also for other PGN-hydrolases that share the same fold. As AmiE active-site mutations also show a severe growth defect, our findings provide an excellent platform for the design of specific inhibitors that target staphylococcal cell separation and can thereby prevent growth of this pathogen.


Zdroje

1. ZellerJL

BurkeAE

GlassRM

2007 JAMA patient page. MRSA infections. JAMA 298 1826

2. FransonTR

ShethNK

RoseHD

SohnlePG

1984 Scanning electron microscopy of bacteria adherent to intravascular catheters. J Clin Microbiol 20 500 505

3. RuppME

FeyPD

HeilmannC

GotzF

2001 Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183 1038 1042

4. HeilmannC

HussainM

PetersG

GotzF

1997 Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24 1013 1024

5. GarciaP

MendezE

GarciaE

RondaC

LopezR

1984 Biochemical characterization of a murein hydrolase induced by bacteriophage Dp-1 in Streptococcus pneumoniae: comparative study between bacteriophage-associated lysin and the host amidase. J Bacteriol 159 793 796

6. CrouxC

RondaC

LopezR

GarciaJL

1993 Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol Microbiol 9 1019 1025

7. BiswasR

VogguL

SimonUK

HentschelP

ThummG

2006 Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259 260 268

8. HobotJA

RogersHJ

1991 Intracellular location of the autolytic N-acetylmuramyl-L-alanine amidase in Bacillus subtilis 168 and in an autolysis-deficient mutant by immunoelectron microscopy. J Bacteriol 173 961 967

9. YamadaS

SugaiM

KomatsuzawaH

NakashimaS

OshidaT

1996 An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178 1565 1571

10. SugaiM

KomatsuzawaH

AkiyamaT

HongYM

OshidaT

1995 Identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol 177 1491 1496

11. OshidaT

SugaiM

KomatsuzawaH

HongYM

SuginakaH

1995 A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92 285 289

12. LutznerN

PatzoldB

ZollS

StehleT

KalbacherH

2009 Development of a novel fluorescent substrate for Autolysin E, a bacterial type II amidase. Biochem Biophys Res Commun 380 554 558

13. SwaminathanCP

BrownPH

RoychowdhuryA

WangQ

GuanR

2006 Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci U S A 103 684 689

14. WangZM

LiX

CocklinRR

WangM

FukaseK

2003 Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 278 49044 49052

15. Holm LKS

RosenströmP

SchenkelA

2008 Searching protein structure databases with DaliLite v.3. Bioinformatics 2780 2781

16. LowLY

YangC

PeregoM

OstermanA

LiddingtonRC

2005 Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280 35433 35439

17. ChoS

WangQ

SwaminathanCP

HesekD

LeeM

2007 Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proc Natl Acad Sci U S A 104 8761 8766

18. GuanR

WangQ

SundbergEJ

MariuzzaRA

2005 Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 A resolution. J Mol Biol 347 683 691

19. BierbaumG

SahlHG

1985 Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141 249 254

20. HeilmannC

SchweitzerO

GerkeC

VanittanakomN

MackD

1996 Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20 1083 1091

21. KabschW

1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 26 795 800

22. OtwinowskiZ

MinorW

1997 Processing of X-ray Diffraction Data Collected in Oscillation Mode; Carter CW, Sweet J, Sweet RM, editors. New York Academic Press 307 326

23. Collaborative Computational Project, Number 4 1994 The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst D 50 760 763

24. JonesTA

ZouJY

CowanSW

KjeldgaardM

1991 Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(Pt 2) 110 119

25. EmsleyP

CowtanK

2004 Acta Cryst D 60 2126 2132

26. BrungerAT

AdamsPD

CloreGM

DeLanoWL

GrosP

1998 Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54 905 921

27. BrungerAT

2007 Version 1.2 of the Crystallography and NMR system. Nat Protoc 2 2728 2733

28. FriesnerRA

BanksJL

MurphyRB

HalgrenTA

KlicicJJ

2004 Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47 1739 1749

29. HalgrenTA

MurphyRB

FriesnerRA

BeardHS

FryeLL

2004 Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47 1750 1759

30. FriesnerRA

MurphyRB

RepaskyMP

FryeLL

GreenwoodJR

2006 Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49 6177 6196

31. PettersenEF

GoddardTD

HuangCC

CouchGS

GreenblattDM

2004 UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25 1605 1612

32. SchrödingerL

2008 Schrödinger Suite 2008 QM-Polarized Ligand Docking protocol. New York

33. de JongeBL

ChangYS

GageD

TomaszA

1992 Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem 267 11248 11254

34. ThompsonJD

HigginsDG

GibsonTJ

1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673 4680

35. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

36. KatohK

MisawaK

KumaK

MiyataT

2002 MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30 3059 3066

37. NotredameC

HigginsDG

HeringaJ

2000 T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302 205 217

38. PoirotO

O'TooleE

NotredameC

2003 Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res 31 3503 3506

39. KrissinelE

HenrickK

2007 Inference of macromolecular assemblies from crystalline state. J Mol Biol 372 774 797

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#