#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein -Glycosylation


Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.


Vyšlo v časopise: Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein -Glycosylation. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000819
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000819

Souhrn

Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.


Zdroje

1. RaetzCR

WhitfieldC

2002 Lipopolysaccharide endotoxins. Annu Rev Biochem 71 635 700

2. LoganRP

1994 Helicobacter pylori and gastric cancer. Lancet 344 1078 1079

3. Simoons-SmitIM

AppelmelkBJ

VerboomT

NegriniR

PennerJL

1996 Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J Clin Microbiol 34 2196 2200

4. MoranAP

2008 Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr Res 343 1952 1965

5. BergmanMP

EngeringA

SmitsHH

van VlietSJ

van BodegravenAA

2004 Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 200 979 990

6. NilssonC

SkoglundA

MoranAP

AnnukH

EngstrandL

2006 An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc Natl Acad Sci U S A 103 2863 2868

7. AppelmelkBJ

MartinSL

MonteiroMA

ClaytonCA

McColmAA

1999 Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect Immun 67 5361 5366

8. SkoglundA

BackhedHK

NilssonC

BjorkholmB

NormarkS

2009 A changing gastric environment leads to adaptation of lipopolysaccharide variants in Helicobacter pylori populations during colonization. PLoS ONE 4 e5885 doi:10.1371/journal.pone.0005885

9. BergmanM

Del PreteG

van KooykY

AppelmelkB

2006 Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 4 151 159

10. RaetzCR

ReynoldsCM

TrentMS

BishopRE

2007 Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76 295 329

11. Meier-DieterU

BarrK

StarmanR

HatchL

RickPD

1992 Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. J Biol Chem 267 746 753

12. LehrerJ

VigeantKA

TatarLD

ValvanoMA

2007 Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol 189 2618 2628

13. CuthbertsonL

PowersJ

WhitfieldC

2005 The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280 30310 30319

14. WhitfieldC

2006 Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75 39 68

15. AppelmelkBJ

ShiberuB

TrinksC

TapsiN

ZhengPY

1998 Phase variation in Helicobacter pylori lipopolysaccharide. Infect Immun 66 70 76

16. GeisG

SuerbaumS

ForsthoffB

LeyingH

OpferkuchW

1993 Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 38 371 377

17. SherburneR

TaylorDE

1995 Helicobacter pylori expresses a complex surface carbohydrate, Lewis X. Infect Immun 63 4564 4568

18. KaniukNA

VinogradovE

WhitfieldC

2004 Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J Biol Chem 279 36470 36480

19. AbeyrathnePD

LamJS

2007 WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core. Mol Microbiol 65 1345 1359

20. MoranAP

2007 Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A. Int J Med Microbiol 297 307 319

21. FeldmanMF

WackerM

HernandezM

HitchenPG

MaroldaCL

2005 Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102 3016 3021

22. WackerM

LintonD

HitchenPG

Nita-LazarM

HaslamSM

2002 N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298 1790 1793

23. KowarikM

NumaoS

FeldmanMF

SchulzBL

CallewaertN

2006 N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314 1148 1150

24. FaridmoayerA

FentabilMA

HauratMF

YiW

WoodwardR

2008 Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem 283 34596 34604

25. AlaimoC

CatreinI

MorfL

MaroldaCL

CallewaertN

2006 Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. Embo J 25 967 976

26. ReevesPR

HobbsM

ValvanoMA

SkurnikM

WhitfieldC

1996 Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4 495 503

27. HofreuterD

OdenbreitS

HaasR

2001 Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41 379 391

28. BackertS

SelbachM

2008 Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10 1573 1581

29. SuerbaumS

JosenhansC

2007 Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5 441 452

30. JuhasM

van der MeerJR

GaillardM

HardingRM

HoodDW

2009 Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33 376 393

31. SzymanskiCM

WrenBW

2005 Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3 225 237

32. MarsdenGL

LiJ

EverestPH

LawsonAJ

KetleyJM

2009 Creation of a large deletion mutant of Campylobacter jejuni reveals that the lipooligosaccharide gene cluster is not required for viability. J Bacteriol 191 2392 2399

33. JeonB

MuraokaW

ScuphamA

ZhangQ

2009 Roles of lipooligosaccharide and capsular polysaccharide in antimicrobial resistance and natural transformation of Campylobacter jejuni. J Antimicrob Chemother 63 462 468

34. DykxhoornDM

St PierreR

LinnT

1996 A set of compatible tac promoter expression vectors. Gene 177 133 136

35. WangY

TaylorDE

1990 Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94 23 28

36. CouturierMR

TascaE

MontecuccoC

SteinM

2006 Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74 273 281

37. AlmRA

LingLS

MoirDT

KingBL

BrownED

1999 Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397 176 180

38. CovacciA

CensiniS

BugnoliM

PetraccaR

BurroniD

1993 Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 90 5791 5795

39. StrahleU

BladerP

AdamJ

InghamPW

1994 A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends Genet 10 75 76

40. CouturierMR

SteinM

2008 Helicobacter pylori produces unique filaments upon host contact in vitro. Can J Microbiol 54 537 548

41. MaroldaCL

LahiryP

VinesE

SaldiasS

ValvanoMA

2006 Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347 237 252

42. TsaiCM

FraschCE

1982 A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119 115 119

43. FeldmanMF

MaroldaCL

MonteiroMA

PerryMB

ParodiAJ

1999 The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274 35129 35138

44. LintonD

DorrellN

HitchenPG

AmberS

KarlyshevAV

2005 Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55 1695 1703

45. MaroldaCL

VicarioliJ

ValvanoMA

2004 Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150 4095 4105

46. ShevchenkoA

WilmM

VormO

MannM

1996 Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68 850 858

47. IelpiL

CousoR

DankertM

1981 Lipid-linked intermediates in the biosynthesis of xanthan gum. FEBS Lett 130 253 256

48. OsbornMJ

1963 Studies on the Gram-Negative Cell Wall. I. Evidence for the role of 2-keto- 3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc Natl Acad Sci U S A 50 499 506

49. CendronL

CouturierM

AngeliniA

BarisonN

SteinM

2009 The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion. J Mol Biol 386 204 217

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#