#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structural Analysis of HIV-1 Maturation Using Cryo-Electron Tomography


HIV-1 buds form infected cells in an immature, non-infectious form. Maturation into an infectious virion requires proteolytic cleavage of the Gag polyprotein at five positions, leading to a dramatic change in virus morphology. Immature virions contain an incomplete spherical shell where Gag is arranged with the N-terminal MA domain adjacent to the membrane, the CA domain adopting a hexameric lattice below the membrane, and beneath this, the NC domain and viral RNA forming a disordered layer. After maturation, NC and RNA are condensed within the particle surrounded by a conical CA core. Little is known about the sequence of structural changes that take place during maturation, however. Here we have used cryo-electron tomography and subtomogram averaging to resolve the structure of the Gag lattice in a panel of viruses containing point mutations abolishing cleavage at individual or multiple Gag cleavage sites. These studies describe the structural intermediates correlating with the ordered processing events that occur during the HIV-1 maturation process. After the first cleavage between SP1 and NC, the condensed NC-RNA may retain a link to the remaining Gag lattice. Initiation of disassembly of the immature Gag lattice requires cleavage to occur on both sides of CA-SP1, while assembly of the mature core also requires cleavage of SP1 from CA.


Vyšlo v časopise: Structural Analysis of HIV-1 Maturation Using Cryo-Electron Tomography. PLoS Pathog 6(11): e32767. doi:10.1371/journal.ppat.1001215
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001215

Souhrn

HIV-1 buds form infected cells in an immature, non-infectious form. Maturation into an infectious virion requires proteolytic cleavage of the Gag polyprotein at five positions, leading to a dramatic change in virus morphology. Immature virions contain an incomplete spherical shell where Gag is arranged with the N-terminal MA domain adjacent to the membrane, the CA domain adopting a hexameric lattice below the membrane, and beneath this, the NC domain and viral RNA forming a disordered layer. After maturation, NC and RNA are condensed within the particle surrounded by a conical CA core. Little is known about the sequence of structural changes that take place during maturation, however. Here we have used cryo-electron tomography and subtomogram averaging to resolve the structure of the Gag lattice in a panel of viruses containing point mutations abolishing cleavage at individual or multiple Gag cleavage sites. These studies describe the structural intermediates correlating with the ordered processing events that occur during the HIV-1 maturation process. After the first cleavage between SP1 and NC, the condensed NC-RNA may retain a link to the remaining Gag lattice. Initiation of disassembly of the immature Gag lattice requires cleavage to occur on both sides of CA-SP1, while assembly of the mature core also requires cleavage of SP1 from CA.


Zdroje

1. DemirovDG

FreedEO

2004 Retrovirus budding. Virus Res 106 87 102

2. MoritaE

SundquistWI

2004 Retrovirus budding. Annu Rev Cell Dev Biol 20 395 425

3. Ganser-PornillosBK

YeagerM

SundquistW

2008 The structural biology of HIV assembly. Curr Opin Struct Biol 18 203 217

4. CoffinJM

HughesSH

VarmusHE

1998 Retroviruses

5. HurleyJH

2008 ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20 4 11

6. WilliamsRL

UrbeS

2007 The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8 355 368

7. AldoviniA

YoungRA

1990 Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64 1920 1926

8. AndersonJ

SchifferC

LeeSK

SwanstromR

2009 Viral protease inhibitors. Handb Exp Pharmacol 85 110

9. BriggsJAG

SimonM

GrossI

KrausslichHG

FullerS

2004 The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11 672 675

10. BriggsJAG

RichesJD

GlassB

BartonovaV

ZanettiG

2009 Structure and assembly of immature HIV. Proc Natl Acad Sci USA 106 11090 11095

11. GanserBK

LiS

KlishkoV

FinchJ

SundquistW

1999 Assembly and analysis of conical models for the HIV-1 core. Science 283 80 83

12. BriggsJAG

WilkT

WelkerR

KrausslichHG

FullerSD

2003 Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22 1707 1715

13. LiS

HillC

SundquistW

FinchJ

2000 Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407 409 413

14. WrightE

SchoolerJ

DingH

KiefferC

FillmoreC

2007 Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26 2218 2226

15. Ganser-PornillosBK

ChengA

YeagerM

2007 Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131 70 79

16. PornillosO

Ganser-PornillosBK

KellyBN

HuaY

WhitbyFG

2009 X-ray structures of the hexameric building block of the HIV capsid. Cell 137 1282 1292

17. von SchwedlerUK

StemmlerTL

KlishkoVY

LiS

AlbertineKH

1998 Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17 1555 1568

18. KingstonRL

Fitzon-OstendorpT

EisenmesserEZ

SchatzGW

VogtVM

2000 Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8 617 628

19. CornilescuCC

BouamrF

YaoX

CarterC

TjandraN

2001 Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol 306 783 797

20. TangC

NdassaY

SummersMF

2002 Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9 537 543

21. GrossI

HohenbergH

HuckhagelC

KräusslichHG

1998 N-Terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J Virol 72 4798 4810

22. PettitSC

MoodyMD

WehbieRS

KaplanAH

NantermetPV

1994 The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68 8017 8027

23. KaplanAH

ManchesterM

SwanstromR

1994 The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68 6782 6786

24. CorenLV

ThomasJA

ChertovaE

SowderRC2nd

GagliardiTD

2007 Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol 81 10047 10054

25. LeeSK

HarrisJ

SwanstromR

2009 A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle. J Virol 83 8536 8543

26. MüllerB

AndersM

AkiyamaH

WelschS

GlassB

2009 HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 284 29692 29703

27. WiegersK

RutterG

KottlerH

TessmerU

HohenbergH

1998 Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 72 2846 2854

28. WymaDJ

JiangJ

ShiJ

ZhouJ

LinebergerJE

2004 Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78 3429 3435

29. GottlingerHG

SodroskiJG

HaseltineWA

1989 Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86 5781 5785

30. KräusslichHG

FäckeM

HeuserAM

KonvalinkaJ

ZentgrafH

1995 The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69 3407 3419

31. LiF

Goila-GaurR

SalzwedelK

KilgoreNR

ReddickM

2003 PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100 13555 13560

32. ZhouJ

YuanX

DismukeD

ForsheyBM

LundquistC

2004 Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol 78 922 929

33. CheckleyMA

LuttgeBG

SoheilianF

NagashimaK

FreedEO

The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology 400 137 144

34. WilkT

GrossI

GowenB

RuttenT

de HaasF

2001 Organization of immature human immunodeficiency virus type 1. J Virol 75 759 771

35. BriggsJAG

GrunewaldK

GlassB

ForsterF

KrausslichHG

2006 The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14 15 20

36. CampbellS

VogtVM

1995 Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 69 6487 6497

37. PettitSC

HendersonGJ

SchifferCA

SwanstromR

2002 Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 76 10226 10233

38. KonvalinkaJ

LitterstMA

WelkerR

KottlerH

RippmannF

1995 An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J Virol 69 7180 7186

39. DettenhoferM

YuXF

1999 Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. J Virol 73 1460 1467

40. KremerJR

MastronardeDN

McIntoshJR

1996 Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116 71 76

41. PruggnallerS

MayrM

FrangakisAS

2008 A visualization and segmentation toolbox for electron microscopy. Journal of Struct Biol 164 161 165

42. PettersenEF

GoddardTD

HuangCC

CouchGS

GreenblattDM

2004 UCSF chimera - A visualization system for exploratory research and analysis. J Comp Chem 25 1605 1612

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#