#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

ANK, a Host Cytoplasmic Receptor for the Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata


Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters.


Vyšlo v časopise: ANK, a Host Cytoplasmic Receptor for the Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata. PLoS Pathog 6(11): e32767. doi:10.1371/journal.ppat.1001201
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001201

Souhrn

Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters.


Zdroje

1. OparkaKJ

2005 Plasmodesmata. Oxford Blackwell Publishing 311

2. MauleAJ

2008 Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11 680 686

3. EpelBL

2009 Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20 1074 1081

4. RheeY

TzfiraT

ChenMH

WaigmannE

CitovskyV

2000 Cell-to-cell movement of tobacco mosaic virus: enigmas and explanations. Mol Plant Pathol 1 33 39

5. WaigmannE

UekiS

TrutnyevaK

CitovskyV

2004 The ins and outs of non-destructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23 195 250

6. LazarowitzSG

BeachyRN

1999 Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11 535 548

7. LucasWJ

2006 Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344 169 184

8. BeachyRN

HeinleinM

2000 Role of P30 in replication and spread of TMV. Traffic 1 540 544

9. BoevinkP

OparkaKJ

2005 Virus-host interactions during movement processes. Plant Physiol 138 1815 1821

10. CitovskyV

KnorrD

SchusterG

ZambryskiPC

1990 The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60 637 647

11. HeinleinM

EpelBL

PadgettHS

BeachyRN

1995 Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270 1983 1985

12. TomeniusK

ClaphamD

MeshiT

1987 Localization by immunogold cytochemistry of the virus coded 30 K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160 363 371

13. DingB

HaudenshieldJS

HullRJ

WolfS

BeachyRN

1992 Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4 915 928

14. MeshiT

WatanabeY

SaitoT

SugimotoA

MaedaT

1987 Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6 2557 2563

15. WolfS

DeomCM

BeachyRN

LucasWJ

1989 Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246 377 379

16. WaigmannE

LucasWJ

CitovskyV

ZambryskiPC

1994 Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91 1433 1437

17. DingB

KwonMO

1996 Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10 157 164

18. NorthcoteDH

DaveyR

LayJ

1989 Use of antisera to localize callose, xylan and arabinogalactan in the cell-plate, primary and secondary cell walls of plant cells. Planta 178 353 366

19. BothaCE

CrossRH

2000 Towards reconciliation of structure with function in plasmodesmata - who is the gatekeeper? Micron 31 713 721

20. BucherGL

TarinaC

HeinleinM

Di SerioF

MeinsFJr

2001 Local expression of enzymatically active class I beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28 361 369

21. IglesiasVA

MeinsFJr

2000 Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21 157 166

22. UekiS

CitovskyV

2002 Cadmium ion-induced glycine-rich protein inhibits systemic movement of a tobamovirus. Nat Cell Biol 4 478 485

23. BeffaRS

HoferRM

ThomasM

MeinsFJr

1996 Decreased susceptibility to virus disease of beta-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8 1001 1011

24. BeffaR

MeinsFJr

1996 Pathogenesis-related functions of plant beta-1,3-glucanases investigated by antisense transformation - a review. Gene 179 97 103

25. SuS

LiuZ

ChenC

ZhangY

WangX

2010 Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22 1373 1387

26. KaussH

1996 Callose synthesis.

SmallwoodM

KnoxJP

BowlesDJ

Membranes: Specialized Functions in Plants Oxford BIOS Scientific Publishers 77 92

27. KaussH

1985 Callose biosynthesis as a Ca2+-regulated process and possible relations to the induction of other metabolic changes. J Cell Sci Suppl 2 89 103

28. LevyA

ErlangerM

RosenthalM

EpelBL

2007 A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49 669 682

29. McLeanBG

ZupanJ

ZambryskiPC

1995 Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7 2101 2114

30. ShimizuT

YoshiiA

SakuraiK

HamadaK

YamajiY

2009 Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus. Arch Virol 154 959 967

31. von BargenS

SalchertK

PaapeM

PiechullaB

KellmannJ

2001 Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin, and DnaJ-like chaperons. Plant Physiol Biochem 39 1083 1093

32. ChenMH

TianGW

GafniY

CitovskyV

2005 Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138 1866 1876

33. ChenMH

ShengJ

HindG

HandaA

CitovskyV

2000 Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19 913 920

34. DorokhovYL

MakinenK

FrolovaOY

MeritsA

SaarinenJ

1999 A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461 223 228

35. FridborgI

GraingerJ

PageA

ColemanM

FindlayK

2003 TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant-Microbe Interact 16 132 140

36. GhoshroyS

FreedmanK

LarteyR

CitovskyV

1998 Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J 13 591 602

37. CitovskyV

GhoshroyS

TsuiF

KlessigDF

1998 Non-toxic concentrations of cadmium inhibit tobamoviral systemic movement by a salicylic acid-independent mechanism. Plant J 16 13 20

38. MosaviLK

CammettTJ

DesrosiersDC

PengZY

2004 The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13 1435 1448

39. BjörklundAK

EkmanD

ElofssonA

2006 Expansion of protein domain repeats. PLoS Comput Biol 2 e114

40. YanJ

WangJ

ZhangH

2002 An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29 193 202

41. KuhlmannM

HorvayK

StrathmannA

HeinekampT

FischerU

2003 The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem 278 8786 8794

42. SpencerML

TheodosiouM

NoonanDJ

2004 NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 279 37069 37078

43. ShumwaySD

MakiM

MiyamotoS

1999 The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem 274 30874 30881

44. RechsteinerM

RogersSW

1996 PEST sequences and regulation by proteolysis. Trends Biochem Sci 21 267 271

45. BaeW

LeeYJ

KimDH

LeeJ

KimS

2008 AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat Cell Biol 10 220 227

46. UekiS

LacroixB

KrichevskyA

LazarowitzSG

CitovskyV

2009 Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4 71 77

47. LewisJD

LazarowitzSG

2010 Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Nat Acad Sci USA 9 2491 2496

48. BoykoV

van Der LaakJ

FerralliJ

SuslovaE

KwonMO

2000 Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 74 11339 11346

49. OparkaKJ

PriorDAM

Santa-CruzS

PadgettHS

BeachyRN

1997 Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12 781 789

50. CrawfordKM

ZambryskiPC

2001 Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125 1802 1812

51. KotlizkyG

KatzA

van der LaakJ

BoykoV

LapidotM

2001 A dysfunctional movement protein of Tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules. Mol Plant-Microbe Interact 14 895 904

52. SimpsonC

ThomasCL

FindlayK

BayerE

MauleAJ

2009 An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21 581 594

53. Guenoune-GelbartD

ElbaumM

SagiG

LevyA

EpelBL

2008 Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant-Microbe Interact 21 335 345

54. HeinleinM

PadgettHS

GensJS

PickardBG

CasperSJ

1998 Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10 1107 1120

55. ReichelC

BeachyRN

1999 The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci 4 458 462

56. BrillLM

NunnRS

KahnTW

YeagerM

BeachyRN

2000 Recombinant tobacco mosaic virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc Natl Acad Sci USA 97 7112 7117

57. MasP

BeachyRN

1999 Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 147 945 958

58. FujikiM

KawakamiS

KimRW

BeachyRN

2006 Domains of tobacco mosaic virus movement protein essential for its membrane association. J Gen Virol 87 2699 2707

59. VossS

SkerraA

1997 Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10 975 982

60. WitteCP

NöelLD

GielbertJ

ParkerJE

RomeisT

2004 Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol Biol 55 135 147

61. CitovskyV

LeeLY

VyasS

GlickE

ChenMH

2006 Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362 1120 1131

62. HuCD

ChinenovY

KerppolaTK

2002 Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9 789 798

63. ZamyatninAAJr

SolovyevAG

BozhkovPV

ValkonenJPT

MorozovSY

2006 Assessment of the integral membrane protein topology in living cells. Plant J 46 145 154

64. AnG

CostaMA

HaSB

1990 Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2 225 233

65. ChaiMF

WeiPC

ChenQJ

AnR

ChenJ

2006 NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J 47 665 674

66. Benitez-AlfonsoY

CiliaM

San RomanA

ThomasCL

MauleAJ

2009 Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci USA 106 3615 3620

67. StonebloomS

Burch-SmithT

KimI

MeinkeD

MindrinosM

2009 Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Nat Acad Sci USA 106 17229 17234

68. SivaguruM

FujiwaraT

SamajJ

BaluškaF

YangZ

2000 Aluminum-induced 1-->3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124 991 1006

69. UekiS

CitovskyV

2005 Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proc Natl Acad Sci USA 102 12089 12094

70. ReichelC

BeachyRN

1998 Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc Natl Acad Sci USA 95 11169 11174

71. WirdnamC

MotoyamaA

Arn-BouldoiresE

van EedenS

IglesiasA

2004 Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. Plant Mol Biol 56 717 730

72. LevyA

Guenoune-GelbartD

EpelBL

2007 beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2 404 407

73. SuenDF

WuSS

ChangHC

DhuggaKS

HuangAH

2003 Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J Biol Chem 278 43672 43681

74. DelpG

PalvaET

1999 A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant beta-1,3-glucanase genes. Plant Mol Biol 39 565 575

75. BolJF

LinthorstHJM

CornelissenBJC

1990 Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28 113 138

76. NishikawaM

SuzukiK

YoshidaK

1990 Structural and functional stability of IncP plasmids during stepwise transmission by trans-kingdom mating: promiscuous conjugation of Escherichia coli and Saccharomyces cerevisiae. Jpn J Genet 65 323 334

77. HuG

RijkenbergFH

1998 Subcellular localization of beta-1,3-glucanase in Puccinia recondita f.sp. tritici-infected wheat leaves. Planta 204 324 334

78. CastresanaC

de CarvalhoF

GheysenG

HabetsM

InzéD

1990 Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene. Plant Cell 2 1131 1143

79. RinnePLH

KaikurantaPM

van der SchootC

2001 The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26 249 264

80. RinnePLH

van der SchootC

2003 Plasmodesmata at the crossroads between development, dormancy, and defense. Can J Bot 81 1182 1197

81. MeierH

BuchsL

BuchalaAJ

HomewoodT

1981 (1-->3)- {lower case beta}-D-glucan (callose) is a probable intermediate in biosynthesis of cellulose fibers. Nature 289 821 822

82. RichmondTA

SomervilleCR

2001 Integrative approaches to determining Csl function. Plant Mol Biol 47 131 143

83. DhuggaKS

2001 Building the wall: genes and enzyme complexes for polysaccharide synthases. Curr Opin Plant Biol 4 488 493

84. VermaDP

HongZ

2001 Plant callose synthase complexes. Plant Mol Biol 47 693 701

85. ChungSM

FrankmanEL

TzfiraT

2005 A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10 357 361

86. GuoHS

FeiJF

XieQ

ChuaNH

2003 A chemical-regulated inducible RNAi system in plants. Plant J 34 383 392

87. TzfiraT

TianGW

LacroixB

VyasS

LiJ

2005 pSAT vectors: a modular series of plasmids for fluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57 503 516

88. ShivprasadS

PogueGP

LewandowskiDJ

HidalgoJ

DonsonJ

1999 Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255 312 323

89. TzfiraT

VaidyaM

CitovskyV

2001 VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20 3596 3607

90. HorschRB

FryJE

HoffmanNL

EichholtzDA

RogersSG

1985 A simple and general method for transferring genes into plants. Science 227 1229 1231

91. TzfiraT

JensenCS

WangxiaW

ZukerA

AltmanA

1997 Transgenic Populus: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15 219 235

92. KapilaJ

De RyckeR

Van MontaguM

AngenonG

1997 An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122 101 108

93. WroblewskiT

TomczakA

MichelmoreR

2005 Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotech J 3 259 273

94. LacroixB

LoyterA

CitovskyV

2008 Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci USA 105 15429 15434

95. WrightKM

WoodNT

RobertsAG

ChapmanS

BoevinkP

2007 Targeting of TMV movement protein to plasmodesmata requires the actin/ER network; evidence from FRAP. Traffic 8 21 31

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#