#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transposon Variants and Their Effects on Gene Expression in


Transposable elements (TEs) make up the majority of many plant genomes. Their transcription and transposition is controlled through siRNAs and epigenetic marks including DNA methylation. To dissect the interplay of siRNA–mediated regulation and TE evolution, and to examine how TE differences affect nearby gene expression, we investigated genome-wide differences in TEs, siRNAs, and gene expression among three Arabidopsis thaliana accessions. Both TE sequence polymorphisms and presence of linked TEs are positively correlated with intraspecific variation in gene expression. The expression of genes within 2 kb of conserved TEs is more stable than that of genes next to variant TEs harboring sequence polymorphisms. Polymorphism levels of TEs and closely linked adjacent genes are positively correlated as well. We also investigated the distribution of 24-nt-long siRNAs, which mediate TE repression. TEs targeted by uniquely mapping siRNAs are on average farther from coding genes, apparently because they more strongly suppress expression of adjacent genes. Furthermore, siRNAs, and especially uniquely mapping siRNAs, are enriched in TE regions missing in other accessions. Thus, targeting by uniquely mapping siRNAs appears to promote sequence deletions in TEs. Overall, our work indicates that siRNA–targeting of TEs may influence removal of sequences from the genome and hence evolution of gene expression in plants.


Vyšlo v časopise: Transposon Variants and Their Effects on Gene Expression in. PLoS Genet 9(2): e32767. doi:10.1371/journal.pgen.1003255
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003255

Souhrn

Transposable elements (TEs) make up the majority of many plant genomes. Their transcription and transposition is controlled through siRNAs and epigenetic marks including DNA methylation. To dissect the interplay of siRNA–mediated regulation and TE evolution, and to examine how TE differences affect nearby gene expression, we investigated genome-wide differences in TEs, siRNAs, and gene expression among three Arabidopsis thaliana accessions. Both TE sequence polymorphisms and presence of linked TEs are positively correlated with intraspecific variation in gene expression. The expression of genes within 2 kb of conserved TEs is more stable than that of genes next to variant TEs harboring sequence polymorphisms. Polymorphism levels of TEs and closely linked adjacent genes are positively correlated as well. We also investigated the distribution of 24-nt-long siRNAs, which mediate TE repression. TEs targeted by uniquely mapping siRNAs are on average farther from coding genes, apparently because they more strongly suppress expression of adjacent genes. Furthermore, siRNAs, and especially uniquely mapping siRNAs, are enriched in TE regions missing in other accessions. Thus, targeting by uniquely mapping siRNAs appears to promote sequence deletions in TEs. Overall, our work indicates that siRNA–targeting of TEs may influence removal of sequences from the genome and hence evolution of gene expression in plants.


Zdroje

1. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

2. MessingJ, BhartiAK, KarlowskiWM, GundlachH, KimHR, et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.

3. SanMiguelPJ, RamakrishnaW, BennetzenJL, BussoCS, DubcovskyJ (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct Integr Genomics 2: 70–80.

4. TenaillonMI, HuffordMB, GautBS, Ross-IbarraJ (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3: 219–229.

5. HawkinsJS, KimH, NasonJD, WingRA, WendelJF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16: 1252–1261.

6. PieguB, GuyotR, PicaultN, RoulinA, SaniyalA, et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16: 1262–1269.

7. HuTT, PattynP, BakkerEG, CaoJ, ChengJF, et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: 476–481.

8. LocktonS, GautBS (2009) The Contribution of Transposable Elements to Expressed Coding Sequence in Arabidopsis thaliana. J Mol Evol 68: 80–89.

9. LischD (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43–66.

10. ZhangX, YazakiJ, SundaresanA, CokusS, ChanSWL, et al. (2006) Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell 126: 1189–1201.

11. CokusSJ, FengS, ZhangX, ChenZ, MerrimanB, et al. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.

12. ListerR, O'MalleyRC, Tonti-FilippiniJ, GregoryBD, BerryCC, et al. (2008) Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell 133: 523–536.

13. AhmedI, SarazinA, BowlerC, ColotV, QuesnevilleH (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res 39: 6919–6931.

14. HollisterJD, SmithLM, GuoYL, OttF, WeigelD, et al. (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108: 2322–2327.

15. HollisterJD, GautBS (2009) Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419–1428.

16. BuisineN, QuesnevilleH, ColotV (2008) Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics 91: 467–475.

17. CaoJ, SchneebergerK, OssowskiS, GuntherT, BenderS, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956–963.

18. GanX, StegleO, BehrJ, SteffenJG, DreweP, et al. (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477: 419–423.

19. SchneebergerK, OssowskiS, OttF, KleinJD, WangX, et al. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA 108: 10249–10254.

20. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

21. OssowskiS, SchneebergerK, ClarkRM, LanzC, WarthmannN, et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18: 2024–2033.

22. LippmanZ, GendrelAV, BlackM, VaughnMW, DedhiaN, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476.

23. FeschotteC, JiangN, WesslerSR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3: 329–341.

24. Feschotte C, Zhang X, Wessler SR (2002) Miniature inverted-repeat elements and their relationship to established DNA transposons. Mobile DNA II. Washington, D.C.: ASM Press.

25. de la ChauxN, TsuchimatsuT, ShimizuKK, WagnerA (2012) The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 3: 2.

26. MatzkeMA, MetteMF, MatzkeAJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43: 401–415.

27. ZilbermanD, GehringM, TranRK, BallingerT, HenikoffS (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61–69.

28. KuriharaY, MatsuiA, KawashimaM, KaminumaE, IshidaJ, et al. (2008) Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochem Biophys Res Commun 376: 553–557.

29. LocktonS, GautBS (2010) The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol Biol 2010/01/14 ed. pp. 10.

30. PereiraV (2004) Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 2004/10/06 ed. pp. R79.

31. DevosKM, BrownJK, BennetzenJL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12: 1075–1079.

32. LeQH, WrightS, YuZ, BureauT (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97: 7376–7381.

33. SabotF, PicaultN, El-BaidouriM, LlauroC, ChaparroC, et al. (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J 66: 241–246.

34. LocktonS, Ross-IbarraJ, GautBS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci USA 105: 13965–13970.

35. HuangX, LuG, ZhaoQ, LiuX, HanB (2008) Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol 148: 25–40.

36. VaughnMW, TanurdzicM, LippmanZ, JiangH, CarrasquilloR, et al. (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5: e174 doi:10.1371/journal.pbio.0050174.

37. KashkushK, FeldmanM, LevyAA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106.

38. ZhangX, ShiuSH, CalA, BorevitzJO (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4: e1000032 doi:10.1371/journal.pgen.1000032.

39. QuesnevilleH, NouaudD, AnxolabehereD (2005) Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol Biol Evol 22: 741–746.

40. CasacubertaE, PardueML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA 100: 3363–3368.

41. JordanIK, RogozinIB, GlazkoGV, KooninEV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19: 68–72.

42. BennetzenJL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42: 251–269.

43. BeckerC, HagmannJ, MullerJ, KoenigD, StegleO, et al. (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480: 245–249.

44. LuJ, ZhangC, BaulcombeDC, ChenZJ (2012) Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA 109: 5529–5534.

45. WarneforsM, PereiraV, Eyre-WalkerA (2010) Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol 27: 1955–1962.

46. MochizukiK, GorovskyMA (2004) Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14: 181–187.

47. MochizukiK, FineNA, FujisawaT, GorovskyMA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110: 689–699.

48. WrightSI, AgrawalN, BureauTE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13: 1897–1903.

49. MontgomeryEA, HuangSM, LangleyCH, JuddBH (1991) Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129: 1085–1098.

50. SchlenkeTA, BegunDJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci USA 101: 1626–1631.

51. MillerWJ, McDonaldJF, NouaudD, AnxolabehereD (1999) Molecular domestication–more than a sporadic episode in evolution. Genetica 107: 197–207.

52. NaitoK, ZhangF, TsukiyamaT, SaitoH, HancockCN, et al. (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461: 1130–1134.

53. Le RouzicA, CapyP (2006) Population genetics models of competition between transposable element subfamilies. Genetics 174: 785–793.

54. Le RouzicA, BoutinTS, CapyP (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104: 19375–19380.

55. ItoH, GaubertH, BucherE, MirouzeM, VaillantI, et al. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472: 115–119.

56. ClarkRM, SchweikertG, ToomajianC, OssowskiS, ZellerG, et al. (2007) Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana. Science 317: 338–342.

57. NaouarN, VandepoeleK, LammensT, CasneufT, ZellerG, et al. (2009) Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant J 57: 184–194.

58. LaubingerS, ZellerG, HenzSR, SachsenbergT, WidmerCK, et al. (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol pp. R112.

59. BenjaminiY, DraiD, ElmerG, KafkafiN, GolaniI (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#