#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Single Transmembrane Peptide DinQ Modulates Membrane-Dependent Activities


The functions of several SOS regulated genes in Escherichia coli are still unknown, including dinQ. In this work we characterize dinQ and two small RNAs, agrA and agrB, with antisense complementarity to dinQ. Northern analysis revealed five dinQ transcripts, but only one transcript (+44) is actively translated. The +44 dinQ transcript translates into a toxic single transmembrane peptide localized in the inner membrane. AgrB regulates dinQ RNA by RNA interference to counteract DinQ toxicity. Thus the dinQ-agr locus shows the classical features of a type I TA system and has many similarities to the tisB-istR locus. DinQ overexpression depolarizes the cell membrane and decreases the intracellular ATP concentration, demonstrating that DinQ can modulate membrane-dependent processes. Augmented DinQ strongly inhibits marker transfer by Hfr conjugation, indicating a role in recombination. Furthermore, DinQ affects transformation of nucleoid morphology in response to UV damage. We hypothesize that DinQ is a transmembrane peptide that modulates membrane-dependent activities such as nucleoid compaction and recombination.


Vyšlo v časopise: Single Transmembrane Peptide DinQ Modulates Membrane-Dependent Activities. PLoS Genet 9(2): e32767. doi:10.1371/journal.pgen.1003260
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003260

Souhrn

The functions of several SOS regulated genes in Escherichia coli are still unknown, including dinQ. In this work we characterize dinQ and two small RNAs, agrA and agrB, with antisense complementarity to dinQ. Northern analysis revealed five dinQ transcripts, but only one transcript (+44) is actively translated. The +44 dinQ transcript translates into a toxic single transmembrane peptide localized in the inner membrane. AgrB regulates dinQ RNA by RNA interference to counteract DinQ toxicity. Thus the dinQ-agr locus shows the classical features of a type I TA system and has many similarities to the tisB-istR locus. DinQ overexpression depolarizes the cell membrane and decreases the intracellular ATP concentration, demonstrating that DinQ can modulate membrane-dependent processes. Augmented DinQ strongly inhibits marker transfer by Hfr conjugation, indicating a role in recombination. Furthermore, DinQ affects transformation of nucleoid morphology in response to UV damage. We hypothesize that DinQ is a transmembrane peptide that modulates membrane-dependent activities such as nucleoid compaction and recombination.


Zdroje

1. Fernandez De HenestrosaAR, OgiT, AoyagiS, ChafinD, HayesJJ, OhmoriH, et al. (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35: 1560–1572.

2. CourcelleJ, KhodurskyA, PeterB, BrownPO, HanawaltPC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158: 41–64.

3. ZuberP (2001) A peptide profile of the Bacillus subtilis genome. Peptides 22: 1555–1577 doi:DOI:10.1016/S0196-9781(01)00492-2.

4. IbrahimM, NicolasP, BessieresP, BolotinA, MonnetV, et al. (2007) A genome-wide survey of short coding sequences in streptococci. Microbiology 153: 3631–3644.

5. AlixE, Blanc-PotardABa (2009) Hydrophobic peptides: novel regulators within bacterial membrane. Mol Microbiol 72: 5–1110.1111/j.1365-2958.2009.06626.x.

6. HemmMR, PaulBJ, SchneiderTD, StorzG, RuddKE (2008) Small membrane proteins found by comparative genomics and ribosome binding site models. Mol Microbiol 70: 1487–1501.

7. HemmMR, PaulBJ, Miranda-RiosJ, ZhangA, SoltanzadN, et al. (2010) Small Stress Response Proteins in Escherichia coli: Proteins Missed by Classical Proteomic Studies. J Bacteriol 192: 46–58.

8. BishopRE, LeskiwBK, HodgesRS, KayCM, WeinerJH (1998) The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 280: 583–596 doi:DOI: 10.1006/jmbi.1998.1894.

9. GasselM, MöllenkampT, PuppeW, AltendorfK (1999) The KdpF Subunit Is Part of the K+-translocating Kdp Complex of Escherichia coli and Is Responsible for Stabilization of the Complex in Vitro. J Biol Chem 274: 37901–37907.

10. WongRS, McMurryLM, LevySB (2000) ‘Intergenic’ blr gene in Escherichia coli encodes a 41-residue membrane protein affecting intrinsic susceptibility to certain inhibitors of peptidoglycan synthesis. Mol Microbiol 37: 364–370.

11. ColeC, BarberJD, BartonGJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36: W197–W201.

12. Weel-SneveR, BjorasM, KristiansenKI (2008) Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res 36: 6249–6259.

13. WickensHJ, PinneyRJ, MasonDJ, GantVA (2000) Flow Cytometric Investigation of Filamentation, Membrane Patency, and Membrane Potential in Escherichia coli following Ciprofloxacin Exposure. Antimicrob Agents Chemother 44: 682–687.

14. OdsbuI, Morigen, SkarstadK (2009) A Reduction in Ribonucleotide Reductase Activity Slows Down the Chromosome Replication Fork but Does Not Change Its Localization. PLoS ONE 4: e7617 doi:10.1371/journal.pone.0007617.

15. VogelJ, ArgamanL, WagnerEG, AltuviaS (2004) The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 14: 2271–2276.

16. DarfeuilleF, UnosonC, VogelJr, WagnerEG (2007) An Antisense RNA Inhibits Translation by Competing with Standby Ribosomes. Mol Cell 26: 381–392 doi:10.1016/j.molcel.2007.04.003.

17. KawanoM, OshimaT, KasaiH, MoriH (2002) Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol 45: 333–349.

18. EguchiY, ItouJ, YamaneM, DemizuR, YamatoF, Okada, et al. (2007) B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. PNAS 104: 18712–18717.

19. AlixE, Blanc-PotardAB (2008) Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27: 546–557.

20. UnosonC, WagnerEG (2008) A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70: 258–270.

21. Levin-ZaidmanS, Frenkiel-KrispinD, ShimoniE, SabanayI, WolfSG, MinskyA (2000) Ordered intracellular RecA-DNA assemblies: A potential site of in vivo RecA-mediated activities. Proc Natl Acad Sci U S A 97: 6791–6796.

22. ModellJW, HopkinsAC, LaubMT (2011) A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes & Development 25: 1328–1343.

23. BarbeJ, VillaverdeA, CairoJ, GuerreroR (1986) ATP hydrolysis during SOS induction in Escherichia coli. J Bacteriol 167: 1055–1057.

24. KamensekS, PodlesekZ, GillorO, Zgur-BertokD (2010) Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression. BMC Microbiol 10: 283 1471-2180-10-283 [pii];10.1186/1471-2180-10-283 [doi].

25. McCoolJD, LongE, PetrosinoJF, SandlerHA, RosenbergSM, et al. (2004) Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol Microbiol 53: 1343–1357 10.1111/j.1365-2958.2004.04225.x [doi];MMI4225 [pii].

26. FriedmanN, VardiS, RonenM, AlonU, StavansJ (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 3: e238 doi:10.1371/journal.pbio.0030238.

27. YamaguchiY, ParkJH, InouyeM (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45: 61–79 10.1146/annurev-genet-110410-132412 [doi].

28. DörrT, Vuli-çM, LewisK (2010) Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli. PLoS Biol 8: e1000317 doi:10.1371/journal.pbio.1000317.

29. DewittSK, AdelbergEA (1962) The Occurrence of a Genetic Transposition in a Strain of Escherichia Coli. Genetics 47: 577–585.

30. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.

31. WilsonGG, YoungKY, EdlinGJ, KonigsbergW (1979) High-frequency generalised transduction by bacteriophage T4. Nature 280: 80–82.

32. BrosiusJ (1984) Plasmid vectors for the selection of promoters. Gene 27: 151–160 doi:DOI: 10.1016/0378-1119(84)90136-7.

33. SeebergE, StrikeP (1976) Excision repair of ultraviolet-irradiated deoxyribonucleic acid in plasmolyzed cells of Escherichia coli. J Bacteriol 125: 787–795.

34. ClarkDJ, MaaløeO (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23: 99–112 doi:DOI: 10.1016/S0022-2836(67)80070-6.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#