#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Genome-Wide RNAi Screen in Identifies the Nicotinic Acetylcholine Receptor Subunit ACR-7 as an Antipsychotic Drug Target


We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype. nAChR agonists phenocopy the developmental effects of clozapine, while nAChR antagonists partially block these effects. ACR-7 is strongly expressed in the pharynx, and clozapine inhibits pharyngeal pumping. acr-7 knockout and nAChR antagonists suppress clozapine-induced inhibition of pharyngeal pumping. These findings suggest that clozapine activates ACR-7 channels in pharyngeal muscle, leading to tetanus of pharyngeal muscle with consequent larval arrest. No APDs are known to activate nAChRs, but a number of studies indicate that α7-nAChR agonists may prove effective for the treatment of psychosis. α-like nAChR signaling is a mechanism through which clozapine may produce its therapeutic and/or toxic effects in humans, a hypothesis that could be tested following identification of the mammalian ortholog of C. elegans acr-7.


Vyšlo v časopise: A Genome-Wide RNAi Screen in Identifies the Nicotinic Acetylcholine Receptor Subunit ACR-7 as an Antipsychotic Drug Target. PLoS Genet 9(2): e32767. doi:10.1371/journal.pgen.1003313
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003313

Souhrn

We report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype. nAChR agonists phenocopy the developmental effects of clozapine, while nAChR antagonists partially block these effects. ACR-7 is strongly expressed in the pharynx, and clozapine inhibits pharyngeal pumping. acr-7 knockout and nAChR antagonists suppress clozapine-induced inhibition of pharyngeal pumping. These findings suggest that clozapine activates ACR-7 channels in pharyngeal muscle, leading to tetanus of pharyngeal muscle with consequent larval arrest. No APDs are known to activate nAChRs, but a number of studies indicate that α7-nAChR agonists may prove effective for the treatment of psychosis. α-like nAChR signaling is a mechanism through which clozapine may produce its therapeutic and/or toxic effects in humans, a hypothesis that could be tested following identification of the mammalian ortholog of C. elegans acr-7.


Zdroje

1. LiebermanJA, StroupTS, McEvoyJP, SwartzMS, RosenheckRA, et al. (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353: 1209–1223.

2. AgidO, FoussiasG, SinghS, RemingtonG (2010) Where to position clozapine: re examining the evidence. Can J Psychiatry 55: 677–684.

3. McEvoyJP, LiebermanJA, StroupTS, DavisSM, MeltzerHY, et al. (2006) Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry 163: 600–610.

4. MeltzerHY, AlphsL, GreenAI, AltamuraAC, AnandR, et al. (2003) Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT). Arch Gen Psychiatry 60: 82–91.

5. GrayJA, RothBL (2007) The pipeline and future of drug development in schizophrenia. Mol Psychiatry 12: 904–922.

6. MeltzerHY (2004) What's atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 4: 53–57.

7. DranovskyA, HenR (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59: 1136–1143.

8. SantarelliL, SaxeM, GrossC, SurgetA, BattagliaF, et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809.

9. BurneT, ScottE, van SwinderenB, HilliardM, ReinhardJ, et al. (2011) Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 16: 7–16.

10. WangX, SliwoskiGR, ButtnerEA (2011) The relevance of Caenorhabditis elegans genetics for understanding human psychiatric disease. Harv Rev Psychiatry 19: 210–218.

11. KarmacharyaR, LynnSK, DemarcoS, OrtizA, WangX, et al. (2011) Behavioral effects of clozapine: involvement of trace amine pathways in C. elegans and M. musculus. Brain Res 1393: 91–99.

12. KarmacharyaR, SliwoskiGR, LundyMY, SuckowRF, CohenBM, et al. (2009) Clozapine interaction with phosphatidyl inositol 3-kinase (PI3K)/insulin-signaling pathway in Caenorhabditis elegans. Neuropsychopharmacology 34: 1968–1978.

13. WeeksKR, DwyerDS, AamodtEJ (2011) Clozapine and lithium require Caenorhabditis elegans beta-arrestin and serum- and glucocorticoid-inducible kinase to affect Daf-16 (FOXO) localization. J Neurosci Res 89: 1658–1665.

14. WeeksKR, DwyerDS, AamodtEJ (2010) Antipsychotic drugs activate the C. elegans Akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci 1: 463–473.

15. HarrisonPJ, WeinbergerDR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68.

16. JonesCK, ByunN, BubserM (2012) Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37: 16–42.

17. MartinLF, FreedmanR (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78: 225–246.

18. EricsonE, GebbiaM, HeislerLE, WildenhainJ, TyersM, et al. (2008) Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet 4: e1000151 doi:10.1371/journal.pgen.1000151

19. DonohoeDR, JarvisRA, WeeksK, AamodtEJ, DwyerDS (2009) Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci Res 64: 280–289.

20. DonohoeDR, AamodtEJ, OsbornE, DwyerDS (2006) Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors. Pharmacol Res 54: 361–372.

21. KamathRS, AhringerJ (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30: 313–321.

22. SimmerF, MoormanC, van der LindenAM, KuijkE, van den BerghePV, et al. (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1: e12 doi:10.1371/journal.pbio.0000012

23. HaradaH, KurauchiM, HayashiR, EkiT (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol Environ Saf 66: 378–383.

24. KondoM, YanaseS, IshiiT, HartmanPS, MatsumotoK, et al. (2005) The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev 126: 642–647.

25. LeeW, LeeTH, ParkBJ, ChangJW, YuJR, et al. (2005) Caenorhabditis elegans calnexin is N-glycosylated and required for stress response. Biochem Biophys Res Commun 338: 1018–1030.

26. StruweWB, HughesBL, OsbornDW, BoudreauED, ShawKM, et al. (2009) Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 19: 1554–1562.

27. KamathRS, FraserAG, DongY, PoulinG, DurbinR, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237.

28. JonesAK, DavisP, HodgkinJ, SattelleDB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7: 129–131.

29. JonesAK, SattelleDB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26: 39–49.

30. AlbuquerqueEX, PereiraEF, AlkondonM, RogersSW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89: 73–120.

31. FucileS (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35: 1–8.

32. BoulinT, GielenM, RichmondJE, WilliamsDC, PaolettiP, et al. (2008) Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole sensitive acetylcholine receptor. Proc Natl Acad Sci U S A 105: 18590–18595.

33. JospinM, QiYB, StawickiTM, BoulinT, SchuskeKR, et al. (2009) A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7: e1000265 doi:10.1371/journal.pbio.1000265

34. Community TCeR (2011) Wormbase web site, release WS227.

35. AlfonsoA, GrundahlK, DuerrJS, HanHP, RandJB (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261: 617–619.

36. RandJB, RussellRL (1984) Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 106: 227–248.

37. RaizenDM, LeeRY, AveryL (1995) Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics 141: 1365–1382.

38. RandJB (2007) Wormbook: Acetylcholine.

39. SurC, MallorgaPJ, WittmannM, JacobsonMA, PascarellaD, et al. (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci U S A 100: 13674–13679.

40. CostaLG, SteardoL, CuomoV (2004) Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects. Pharmacol Rev 56: 103–147.

41. PageAP, JohnstoneIL (2007) Wormbook: The cuticle.

42. BaldessariniRJ, CentorrinoF, FloodJG, VolpicelliSA, Huston-LyonsD, et al. (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9: 117–124.

43. CentorrinoF, BaldessariniRJ, FrankenburgFR, KandoJ, VolpicelliSA, et al. (1996) Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am J Psychiatry 153: 820–822.

44. WalshT, McClellanJM, McCarthySE, AddingtonAM, PierceSB, et al. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320: 539–543.

45. WalshMT, RyanM, HillmannA, CondrenR, KennyD, et al. (2002) Elevated expression of integrin alpha(IIb) beta(IIIa) in drug-naive, first-episode schizophrenic patients. Biol Psychiatry 52: 874–879.

46. WangZ, WeiJ, ZhangX, GuoY, XuQ, et al. (2006) A review and re-evaluation of an association between the NOTCH4 locus and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 141B: 902–906.

47. KiharaT, ShimohamaS, SawadaH, HondaK, NakamizoT, et al. (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta amyloid-induced neurotoxicity. J Biol Chem 276: 13541–13546.

48. ThomasDR, DadaA, JonesGA, DeiszRA, GigoutS, et al. (2010) N-desmethylclozapine (NDMC) is an antagonist at the human native muscarinic M(1) receptor. Neuropharmacology 58: 1206–1214.

49. FrancisMM, ChengEY, WeilandGA, OswaldRE (2001) Specific activation of the alpha 7 nicotinic acetylcholine receptor by a quaternary analog of cocaine. Mol Pharmacol 60: 71–79.

50. MobascherA, WintererG (2008) The molecular and cellular neurobiology of nicotine abuse in schizophrenia. Pharmacopsychiatry 41Suppl 1: S51–59.

51. FreedmanR, AdamsCE, LeonardS (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20: 299–306.

52. FreedmanR, HallM, AdlerLE, LeonardS (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22–33.

53. Martin-RuizCM, HaroutunianVH, LongP, YoungAH, DavisKL, et al. (2003) Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 54: 1222–1233.

54. MarutleA, ZhangX, CourtJ, PiggottM, JohnsonM, et al. (2001) Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 22: 115–126.

55. GrinevichVP, PapkeRL, LippielloPM, BencherifM (2009) Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology 57: 183–191.

56. SinghalSK, ZhangL, MoralesM, OzM (2007) Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors. Neuropharmacology 52: 387–394.

57. BallivetM, AlliodC, BertrandS, BertrandD (1996) Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 258: 261–269.

58. RaymondV, MonganNP, SattelleDB (2000) Anthelmintic actions on homomer forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans. Neuroscience 101: 785–791.

59. SimoskyJK, StevensKE, AdlerLE, FreedmanR (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl) 165: 386–396.

60. FengZ, LiW, WardA, PiggottBJ, LarkspurER, et al. (2006) A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621–633.

61. GottiC, ClementiF, FornariA, GaimarriA, GuiducciS, et al. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78: 703–711.

62. WangN, Orr-UrtregerA, ChapmanJ, ErgunY, RabinowitzR, et al. (2005) Hidden function of neuronal nicotinic acetylcholine receptor beta2 subunits in ganglionic transmission: comparison to alpha5 and beta4 subunits. J Neurol Sci 228: 167–177.

63. WangF, GerzanichV, WellsGB, AnandR, PengX, et al. (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271: 17656–17665.

64. YuCR, RoleLW (1998) Functional contribution of the alpha5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones. J Physiol 509 (Pt 3) 667–681.

65. YuCR, RoleLW (1998) Functional contribution of the alpha7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. J Physiol 509 (Pt 3) 651–665.

66. NollenEA, GarciaSM, van HaaftenG, KimS, ChavezA, et al. (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101: 6403–6408.

67. MelloCC, KramerJM, StinchcombD, AmbrosV (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 3959–3970.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#