#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Iterative Genetic and Dynamical Modelling Approach Identifies Novel Features of the Gene Regulatory Network Underlying Melanocyte Development


The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the zebrafish embryo. More generally, this novel approach to understanding melanocyte differentiation provides a basis for systematic modelling of differentiation in this and other cell-types.


Vyšlo v časopise: An Iterative Genetic and Dynamical Modelling Approach Identifies Novel Features of the Gene Regulatory Network Underlying Melanocyte Development. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002265
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002265

Souhrn

The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the zebrafish embryo. More generally, this novel approach to understanding melanocyte differentiation provides a basis for systematic modelling of differentiation in this and other cell-types.


Zdroje

1. DavidsonEHRastJPOliveriPRansickACalestaniC 2002 A genomic regulatory network for development. Science 295 1669 1678

2. Ben-Tabou de-LeonSDavidsonEH 2006 Deciphering the underlying mechanism of specification and differentiation: the sea urchin gene regulatory network. Sci STKE 2006 pe47

3. HuangSGuoYPMayGEnverT 2007 Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305 695 713

4. WhiteRJNieQLanderADSchillingTF 2007 Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5 e304 doi:10.1371/journal.pbio.0050304

5. GiudicelliFOzbudakEMWrightGJLewisJ 2007 Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 5 e150 doi:10.1371/journal.pbio.0050150

6. NordlundJJBoissyREHearingVJKingCYOettingWS 2006 The Pigmentary System: Physiology and Pathophysiology Malden, Oxford, Victoria Blackwell Publishing Ltd

7. BennettDCLamoreuxML 2003 The color loci of mice–a genetic century. Pigment Cell Res 16 333 344

8. RaibleDWWoodAHodsdonWHenionPDWestonJA 1992 Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev Dyn 195 29 42

9. RawlesME 1947 Origin of pigment cells from the neural crest in the mouse embryo. Physiol Zool 20 248 266

10. SchillingTFKimmelCB 1994 Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120 483 494

11. NishimuraEKJordanSAOshimaHYoshidaHOsawaM 2002 Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416 854 860

12. HodgkinsonCAMooreKJNakayamaASteingrimssonECopelandNG 1993 Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74 395 404

13. ListerJARobertsonCPLepageTJohnsonSLRaibleDW 1999 nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126 3757 3767

14. BondurandNPingaultVGoerichDELemortNSockE 2000 Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9 1907 1917

15. DuttonKAPaulinyALopesSSElworthySCarneyTJ 2001 Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128 4113 4125

16. ElworthySListerJACarneyTJRaibleDWKelshRN 2003 Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development 130 2809 2818

17. LeeMGoodallJVerasteguiCBallottiRGodingCR 2000 Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem 275 37978 37983

18. PotterfSBFurumuraMDunnKJArnheiterHPavanWJ 2000 Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107 1 6

19. VerasteguiCBilleKOrtonneJPBallottiR 2000 Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem 275 30757 30760

20. WatanabeKTakedaKYasumotoKUdonoTSaitoH 2002 Identification of a distal enhancer for the melanocyte-specific promoter of the MITF gene. Pigment Cell Res 15 201 211

21. CroninJCWunderlichJLoftusSKPrickettTDWeiX 2009 Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res 22 435 444

22. GarrawayLAWidlundHRRubinMAGetzGBergerAJ 2005 Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436 117 122

23. MurisierFGuichardSBeermannF 2007 The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. Pigment Cell Res 20 173 184

24. HouLArnheiterHPavanWJ 2006 Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc Natl Acad Sci U S A 103 9081 9085

25. LudwigARehbergSWegnerM 2004 Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 556 236 244

26. JiaoZMollaaghababaRPavanWJAntonellisAGreenED 2004 Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res 17 352 362

27. PotterfSBMollaaghababaRHouLSouthard-SmithEMHornyakTJ 2001 Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 237 245 257

28. CarneyTJDuttonKAGreenhillEDelfino-MachinMDufourcqP 2006 A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133 4619 4630

29. KelshRNBrandMJiangYJHeisenbergCPLinS 1996 Zebrafish pigmentation mutations and the processes of neural crest development. Development 123 369 389

30. PasseronTValenciaJCBertolottoCHoashiTLe PapeE 2007 SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci U S A 104 13984 13989

31. CookALSmithAGSmitDJLeonardJHSturmRA 2005 Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Exp Cell Res 308 222 235

32. ChiangEFPaiCIWyattMYanYLPostlethwaitJ 2001 Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 231 149 163

33. LiMZhaoCWangYZhaoZMengA 2002 Zebrafish sox9b is an early neural crest marker. Dev Genes Evol 212 203 206

34. YanYLWilloughbyJLiuDCrumpJGWilsonC 2005 A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 132 1069 1083

35. KimJLoLDormandEAndersonDJ 2003 SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38 17 31

36. KelshRNSchmidBEisenJS 2000 Genetic analysis of melanophore development in zebrafish embryos. Dev Biol 225 277 293

37. DuttonJRAntonellisACarneyTJRodriguesFSPavanWJ 2008 An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Dev Biol 8 105

38. IgnatiusMSMooseHEEl-HodiriHMHenionPD 2008 colgate/hdac1 Repression of foxd3 expression is required to permit mitfa-dependent melanogenesis. Dev Biol 313 568 583

39. PlasterNSonntagCSchillingTFHammerschmidtM 2007 REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Dev Dyn 236 1891 1904

40. AntonellisAHuynhJLLee-LinSQVintonRMRenaudG 2008 Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet 4 e1000174 doi:10.1371/journal.pgen.1000174

41. WernerTHammerAWahlbuhlMBoslMRWegnerM 2007 Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res 35 6526 6538

42. DealKKCantrellVAChandlerRLSaundersTLMortlockDP 2006 Distant regulatory elements in a Sox10-beta GEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev Dyn 235 1413 1432

43. AntonellisABennettWRMenheniottTRPrasadABLee-LinSQ 2006 Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg-Shah (WS4) syndrome. Hum Mol Genet 15 259 271

44. MinchinJEHughesSM 2008 Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Dev Biol 317 508 522

45. OdenthalJNusslein-VolhardC 1998 fork head domain genes in zebrafish. Dev Genes Evol 208 245 258

46. KnightRDNairSNelsonSSAfsharAJavidanY 2003 lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130 5755 5768

47. Barrallo-GimenoAHolzschuhJDrieverWKnapikEW 2004 Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 131 1463 1477

48. LiWCornellRA 2007 Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol 304 338 354

49. ListerJACloseJRaibleDW 2001 Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev Biol 237 333 344

50. SaitoHYasumotoKTakedaKTakahashiKFukuzakiA 2002 Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J Biol Chem 277 28787 28794

51. DuttonKAbbasLSpencerJBrannonCMowbrayC 2009 A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. Dis Model Mech 2 68 83

52. LoftusSKBaxterLLBuacKWatkins-ChowDELarsonDM 2009 Comparison of melanoblast expression patterns identifies distinct classes of genes. Pigment Cell Melanoma Res 22 611 622

53. HinmanVFYankuraKAMcCauleyBS 2009 Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta 1789 326 332

54. MotohashiTYamanakaKChibaKAokiHKunisadaT 2009 Unexpected Multipotency of Melanoblasts Isolated from Murine Skin. Stem Cells 27 888 897

55. LangDLuMMHuangLEnglekaKAZhangM 2005 Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433 884 887

56. GreenhillER 2008 Genetic regulation of neural crest cell differentiation Bath University of Bath 210

57. CunliffeVT 2004 Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131 2983 2995

58. CunliffeVT 2008 Eloquent silence: developmental functions of Class I histone deacetylases. Curr Opin Genet Dev 18 404 410

59. VanceKWGodingCR 2004 The transcription network regulating melanocyte development and melanoma. Pigment Cell Res 17 318 325

60. PriceERHorstmannMAWellsAGWeilbaecherKNTakemotoCM 1998 alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 273 33042 33047

61. LoganDWBryson-RichardsonRJPaganKETaylorMSCurriePD 2003 The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics 81 184 191

62. LoganDWBurnSFJacksonIJ 2006 Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res 19 206 213

63. GrossJBBorowskyRTabinCJ 2009 A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 5 e1000326 doi:10.1371/journal.pgen.1000326

64. RichardsonJLundegaardPRReynoldsNLDorinJRPorteousDJ 2008 mc1r Pathway regulation of zebrafish melanosome dispersion. Zebrafish 5 289 295

65. CarreiraSGoodallJDenatLRodriguezMNuciforoP 2006 Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20 3426 3439

66. WidlundHRHorstmannMAPriceERCuiJLessnickSL 2002 Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 158 1079 1087

67. DelmasVBeermannFMartinozziSCarreiraSAckermannJ 2007 Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21 2923 2935

68. KimmelCBBallardWWKimmelSRUllmannBSchillingTF 1995 Stages of Embryonic Development of the Zebrafish. Dev Dynamics 203 253 310

69. ThisseCThisseBSchillingTFPostlethwaitJH 1993 Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119 1203 1215

70. ThisseBPfumioSFürthauerMBLHeyerV 2001 Expression of the zebrafish genome during embryogenesis. ZFIN online publication

71. CampELardelliM 2001 Tyrosinase gene expression in zebrafish embryos. Dev Genes Evol 211 150 153

72. ParichyDMRansomDGPawBZonLIJohnsonSL 2000 An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 127 3031 3044

73. ParkHCBoyceJShinJAppelB 2005 Oligodendrocyte specification in zebrafish requires notch-regulated cyclin-dependent kinase inhibitor function. J Neurosci 25 6836 6844

74. UngosJMKarlstromRORaibleDW 2003 Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development 130 5351 5362

75. MatysVFrickeEGeffersRGosslingEHaubrockM 2003 TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31 374 378

76. LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25 402 408

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#