#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements


Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur.


Vyšlo v časopise: A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements. PLoS Genet 7(5): e32767. doi:10.1371/journal.pgen.1002089
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002089

Souhrn

Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur.


Zdroje

1. VenterJCAdamsMDMyersEWLiPWMuralRJ 2001 The sequence of the human genome. Science 291 1304 1351

2. LanderESLintonLMBirrenBNusbaumCZodyMC 2001 Initial sequencing and analysis of the human genome. Nature 409 860 921

3. LevySSuttonGNgPCFeukLHalpernAL 2007 The diploid genome sequence of an individual human. PLoS Biol 5 e254 doi:10.1371/journal.pbio.0050254

4. BaileyJALiuGEichlerEE 2003 An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73 823 834

5. DeiningerPLBatzerMA 1999 Alu repeats and human disease. Mol Genet Metab 67 183 193

6. LangeJSkaletskyHvan DaalenSKEmbrySLKorverCM 2009 Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138 855 869

7. LengauerCKinzlerKWVogelsteinB 1998 Genetic instabilities in human cancers. Nature 396 643 649

8. MyungKChenCKolodnerRD 2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076

9. ChenCKolodnerRD 1999 Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23 81 85

10. HuangMEKolodnerRD 2005 A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17 709 720

11. PutnamCDHayesTKKolodnerRD 2009 Specific pathways prevent duplication-mediated genome rearrangements. Nature 460 984 989

12. KimJMVanguriSBoekeJDGabrielAVoytasDF 1998 Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8 464 478

13. RoederGSFinkGR 1980 DNA rearrangements associated with a transposable element in yeast. Cell 21 239 249

14. ChaleffDTFinkGR 1980 Genetic events associated with an insertion mutation in yeast. Cell 21 227 237

15. RoederGSFinkGR 1982 Movement of yeast transposable elements by gene conversion. Proc Natl Acad Sci U S A 79 5621 5625

16. DunhamMJBadraneHFereaTAdamsJBrownPO 2002 Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99 16144 16149

17. UmezuKHiraokaMMoriMMakiH 2002 Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics 160 97 110

18. SuroskyRTTyeBK 1985 Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics 110 397 419

19. KupiecMPetesTD 1988 Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol Cell Biol 8 2942 2954

20. KupiecMPetesTD 1988 Allelic and ectopic recombination between Ty elements in yeast. Genetics 119 549 559

21. VincentAPetesTD 1989 Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics 122 759 772

22. ArguesoJLWestmorelandJMieczkowskiPAGawelMPetesTD 2008 Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105 11845 11850

23. HoangMLTanFJLaiDCCelnikerSEHoskinsRA 2010 Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6 e1001228 doi:10.1371/journal.pgen.1001228

24. LemoineFJDegtyarevaNPLobachevKPetesTD 2005 Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120 587 598

25. PennaneachVKolodnerRD 2009 Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS ONE 4 e6389 doi:10.1371/journal.pone.0006389

26. NarayananVMieczkowskiPAKimHMPetesTDLobachevKS 2006 The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125 1283 1296

27. DowningBMorganRVanHulleKDeemAMalkovaA 2008 Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 645 9 18

28. VanHulleKLemoineFJNarayananVDowningBHullK 2007 Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 2601 2614

29. DeemABarkerKVanhulleKDowningBVaylA 2008 Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179 1845 1860

30. CasperAMGreenwellPWTangWPetesTD 2009 Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p. Genetics 183 423 439 421SI–426SI

31. KolodnerRDPutnamCDMyungK 2002 Maintenance of genome stability in Saccharomyces cerevisiae. Science 297 552 557

32. HenrySADonahueTFCulbertsonMR 1975 Selection of spontaneous mutants by inositol starvation in yeast. Mol Gen Genet 143 5 11

33. PutnamCDHayesTKKolodnerRD 2010 Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 6 e1000933 doi:10.1371/journal.pgen.1000933

34. ScholesDTBanerjeeMBowenBCurcioMJ 2001 Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159 1449 1465

35. ChinJKBashkirovVIHeyerWDRomesbergFE 2006 Esc4/Rtt107 and the control of recombination during replication. DNA Repair (Amst) 5 618 628

36. HanJZhouHHorazdovskyBZhangKXuRM 2007 Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315 653 655

37. RobertsTMZaidiIWVaisicaJAPeterMBrownGW 2008 Regulation of rtt107 recruitment to stalled DNA replication forks by the cullin rtt101 and the rtt109 acetyltransferase. Mol Biol Cell 19 171 180

38. WinstonFChaleffDTValentBFinkGR 1984 Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107 179 197

39. WinstonFDollardCMaloneEAClareJKapakosJG 1987 Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115 649 656

40. RadfordSJBoyleMLSheelyCJGrahamJHaeusserDP 2004 Increase in Ty1 cDNA recombination in yeast sir4 mutant strains at high temperature. Genetics 168 89 101

41. BoltonECMildvanASBoekeJD 2002 Inhibition of reverse transcription in vivo by elevated manganese ion concentration. Mol Cell 9 879 889

42. FasslerJSWinstonF 1988 Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118 203 212

43. KroghBOSymingtonLS 2004 Recombination proteins in yeast. Annu Rev Genet 38 233 271

44. LiefshitzBParketAMayaRKupiecM 1995 The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics 140 1199 1211

45. RattrayAJSymingtonLS 1994 Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138 587 595

46. BaiYSymingtonLS 1996 A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev 10 2025 2037

47. SignonLMalkovaANaylorMLKleinHHaberJE 2001 Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 21 2048 2056

48. ChenQIjpmaAGreiderCW 2001 Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21 1819 1827

49. PutnamCDPennaneachVKolodnerRD 2004 Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101 13262 13267

50. DavisAPSymingtonLS 2004 RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24 2344 2351

51. Voelkel-MeimanKRoederGS 1990 Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics 126 851 867

52. MorrowDMConnellyCHieterP 1997 “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147 371 382

53. BoscoGHaberJE 1998 Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150 1037 1047

54. MalkovaAIvanovELHaberJE 1996 Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A 93 7131 7136

55. SmithCELamAFSymingtonLS 2009 Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Mol Cell Biol 29 1432 1441

56. LemoineFJDegtyarevaNPKokoskaRJPetesTD 2008 Reduced levels of DNA polymerase delta induce chromosome fragile site instability in yeast. Mol Cell Biol 28 5359 5368

57. HaberJEHearnM 1985 Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics 111 7 22

58. SmithCELlorenteBSymingtonLS 2007 Template switching during break-induced replication. Nature 447 102 105

59. SchmidtKHWuJKolodnerRD 2006 Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26 5406 5420

60. AmbergDCBurkeDJStrathernJN 2006 Isolation of Yeast Genomic DNA for Southern Blot Analysis. Cold Spring Harbor Protocols 2006 pdb.prot4149-

61. Yanisch-PerronCVieiraJMessingJ 1985 Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33 103 119

62. WinzelerEAShoemakerDDAstromoffALiangHAndersonK 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906

63. SikorskiRSHieterP 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27

64. LuriaSEDelbruckM 1943 Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 28 491 511

65. LeaDECoulsonCA 1949 The distribution of the numbers of mutants in bacterial populations. Journal of Genetics 49 264 285

66. ToedlingJSkylarOKruegerTFischerJJSperlingS 2007 Ringo–an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 8 221

67. GentlemanRCCareyVJBatesDMBolstadBDettlingM 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80

68. SchmidtKHKolodnerRD 2006 Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc Natl Acad Sci U S A 103 18196 18201

69. MyungKDattaAKolodnerRD 2001 Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104 397 408

70. KatsESEnserinkJMMartinezSKolodnerRD 2009 The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 29 5226 5237

71. MyungKPennaneachVKatsESKolodnerRD 2003 Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 100 6640 6645

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#