-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
An Adaptive Allelic Series Featuring Complex Gene Rearrangements
article has not abstract
Published in the journal: An Adaptive Allelic Series Featuring Complex Gene Rearrangements. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002347
Category: Perspective
doi: https://doi.org/10.1371/journal.pgen.1002347Summary
article has not abstract
An intriguing observation from some studies of adaptive change is allelic series, where adaptive alleles successively replace each other at a single locus. For instance, at the Cyp6g1 locus of Drosophila melanogaster, transposable element insertions and a gene duplication event have combined to create at least two adaptive alleles in which the more derived the allele, the greater the insecticide resistance of its bearer [1]. Similarly, insecticide-resistant alleles in Culex mosquitoes have been observed replacing each other within the period of a decade [2].
Another case of an allelic series is presented in the paper by Magwire et al. [3], which identifies a new locus affecting sigma virus resistance in D. melanogaster. Multiple alleles exist at this locus and they differ in their extent of gene copy number polymorphism and feature a transposable element thought to generate novel transcripts. Thus, this study contributes to an emerging picture that the mutations associated with recent adaptive events may not involve regulatory SNPs or coding SNPs, but complex gene rearrangements [1], [4], [5]. Furthermore, the nested nature of these rearrangements means that the order in which they arose can be deduced.
The genes featured in the particular rearrangement described by Magwire etal. [3] were originally identified via a novel genome-wide screen to identify transposable element insertions at high frequencies in natural populations [6]. Unlike the situation in humans and many other vertebrates, particular transposable element insertions are rarely at high frequencies in Drosophila populations. A survey of insertion site occupancy led Aminetzach and colleagues [6] to a gene, which they dubbed CHKov1, that has a DOC transposable element inserted into the coding region. This gene is one of a large cluster of 27 paralogs that encode proteins with distant similarity to choline kinases. The pattern of polymorphism around the DOC insertion suggests it was at the center of a very recent and strong selective sweep dating to between 25 and 240 years ago. What selective agent could result in such strong selection on an insect species, so recently? The link to “choline” motivated Aminetzach et al. [6] to test whether a commonly used class of insecticides, the organophosphates (OPs), which target the insect nervous system by inhibiting the enzyme acetylcholine esterase, could be the selective agent driving this selective sweep at a locus implied in choline metabolism. They found that a line bearing the DOC allele had greater resistance to an OP than a control line with a similar genetic background.
The new study of Magwire et al. [3] links another adaptive phenotype, viral resistance, to the CHKov genes. The sigma virus has been found to infect up to 20% of D. melanogaster flies in field populations. At least six separate genes that reduce infection rates have been mapped in D. melanogaster [7]. Sigma-resistant alleles of the ref(2)P locus of D. melanogaster have previously been characterized and display patterns of polymorphism consistent with a selective sweep [8]. Magwire et al. [3] used a positional cloning approach involving some of the genetic tools available for D. melanogaster to molecularly characterize the second of the six genes, ref(3)D. The resistant mutation involves a complex rearrangement of the CHKov1 and CHKov2 genes, with gene duplications derived from the allele originally characterized by Aminetzach et al. [6]. Thus the naturally occurring allelic series involves three alleles: the ancestral allele that is purportedly susceptible to an OP insecticide and the sigma virus, the DOC insertion allele characterized as resistant to an OP and moderately resistant to sigma viruses, and a derived, highly virus-resistant allele (alleles A, B, and C, respectively, in Figure 1).
Fig. 1. The timeline of putative selective events at two loci with alleles refractory to sigma virus infection.
At the ref(3)D locus, a selective sweep occurred between 25 and 240 years ago (indicated in green), reducing the frequency of the susceptible A allele (shown in blue) and increasing the frequency of the resistant B allele (yellow) to over 80%. The first unique features of the B allele have been dated to 90,000 years ago. The highly resistant C allele (red) is present in only one of the lines tested. At the ref(2)P locus, the GLU-ASP resistance allele is present at about 20% frequency in some contemporary populations, and is believed to have arisen 1,000–7,000 years ago. As in the case of Cyp6g1, it appears that the next step in an allelic series has arisen before the previous step has swept to fixation. What is the significance of this? We might expect that in a species with high population substructure, independent alleles may arise and compete against each other depending on the degree of gene flow. However, D. melanogaster populations are not thought of as highly structured and the fact the alleles in an allelic series are not independent, but are nested, indicates that D. melanogaster populations are large enough to increase the probability of subsequent mutation, even while the previous allele is at a low to moderate frequency.
On the other hand, these results suggest mutation may still be limiting. The most adaptive allele at a gene may be two, three, or more mutational steps away. This may be because the initial adaptive allele is negatively correlated with other important traits, while the subsequent alleles ameliorate these trade offs or costs. Alternatively, the allelic series may reflect a “Red Queen” phenomenon, where a molecular arms race between host and pathogen means that new alleles must arise in the host species, to counter the new alleles in the pathogen species. In that case, it is not that the organism starts multiple steps away from the “adaptive peak”, but that after each step, the “adaptive landscape” changes.
Magwire et al. [3] suggest that the adaptive response to the sigma virus has pre-adapted D. melanogaster to OP insecticides. However, it is now unclear how important OPs have been to selection at this locus. One of the mysteries about the DOC element insertion into the CHKov1 gene is that the age of the allele (estimated to be ∼90,000 years), as determined by its divergence from the ancestral allele, is much older than the use of insecticides and the age of the selective sweep, which was determined from the patterns in nearby polymorphisms. The presence/absence of the DOC insertion is also correlated with the presence/absence of seven amino acid changes affecting a predicted protein that is substantially shortened and altered relative to that encoded by the ancestral allele. Now we know of another selective agent, namely the sigma virus, that is thought to have been infecting D. melanogaster for at least 200 years, but probably longer [9]. A highly virulent variant of the sigma virus is thought to have spread through European Drosophila populations in the 1980s, and that is possibly responsible for the recent sweep [10].
Magwire et al.'s [3] findings should motivate molecular and biochemical investigations of the various alleles of CHKov1 and 2, and of the somewhat mysterious group of paralogous proteins currently dubbed “choline kinase–like”. Finally, such examples of allelic series not only tell us about population size and structure, but also provide important empirical examples of how fast adaptive evolution at a single locus can be, and should motivate the search for other “adaptive allelic series” that will help us understand the limits and dynamics of adaptation.
Zdroje
1. SchmidtJMGoodRTAppletonBSherrardJRaymantGC 2010 Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet 6 e1000998 doi:10.1371/journal.pgen.1000998
2. RaymondMBerticatCWeillMPasteurNChevillonC 2001 Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113 287 296
3. MagwireMMBayerFWebsterCLCaoCJigginsFM 2011 Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a duplication. PLoS Genet 7 e1002337 doi:10.1371/journal.pgen.1002337
4. RogersRLBedfordTLyonsAMHartlDL 2010 Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster. Proc Natl Acad Sci U S A 107 10943 10948
5. LongMBetranEThorntonKWangW 2003 The origin of new genes: Glimpses from the young and old. Nat Rev Genet 4 865 875
6. AminetzachYTMacphersonJMPetrovDA 2005 Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309 764 767
7. GayP 1978 Drosophila genes which intervene in multiplication of sigma virus. Mol Gen Genet 159 269 283
8. BanghamJObbardDJKimK-WHaddrillPRJigginsFM 2007 The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. P R Soc B 274 2027 2034
9. CarpenterJAObbardDJMasideXJigginsFM 2007 The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster. Mol Ecol 16 3947 3954
10. FleurietASperlichD 1992 Evolution of the Drosophila melanogaster-sigma virus system in a natural population from Tübingen. Theor Appl Genet 85 186 189
Štítky
Genetika Reprodukčná medicína
Článek Macroautophagy Is Regulated by the UPR–Mediator CHOP and Accentuates the Phenotype of SBMA MiceČlánek Dynamic Replacement of Histone H3 Variants Reprograms Epigenetic Marks in Early Mouse EmbryosČlánek Mutations in a Guanylate Cyclase GCY-35/GCY-36 Modify Bardet-Biedl Syndrome–Associated Phenotypes in
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2011 Číslo 10- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Transcriptional Robustness Complements Nonsense-Mediated Decay in Humans
- Identification, Replication, and Fine-Mapping of Loci Associated with Adult Height in Individuals of African Ancestry
- Genetic Determinants of Serum Testosterone Concentrations in Men
- A One Base Pair Deletion in the Canine Gene Causes Exon Skipping and Late-Onset Neuronal Ceroid Lipofuscinosis in the Tibetan Terrier
- Three Structure-Selective Endonucleases Are Essential in the Absence of BLM Helicase in
- Identification of Widespread Ultra-Edited Human RNAs
- Multiple Wnts Redundantly Control Polarity Orientation in Epithelial Stem Cells
- The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in
- Transcriptome-Wide Binding Sites for Components of the Non-Poly(A) Termination Pathway: Nrd1, Nab3, and Sen1
- Macroautophagy Is Regulated by the UPR–Mediator CHOP and Accentuates the Phenotype of SBMA Mice
- Genetic Rearrangements Can Modify Chromatin Features at Epialleles
- Novel Function of as a Gap Gene during Spider Segmentation
- A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol
- Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis
- Genetic Diversity in Cytokines Associated with Immune Variation and Resistance to Multiple Pathogens in a Natural Rodent Population
- Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast
- Dynamic Replacement of Histone H3 Variants Reprograms Epigenetic Marks in Early Mouse Embryos
- A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover
- HIF–VEGF Pathways Are Critical for Chronic Otitis Media in and Mouse Mutants
- A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila
- Role of Exonic Variation in Chemokine Receptor Genes on AIDS: Association with Pneumocystis Pneumonia
- Whole-Exome Sequencing Identifies Homozygous Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial -AAA Proteases
- Von Hippel-Lindau () Inactivation in Sporadic Clear Cell Renal Cancer: Associations with Germline Polymorphisms and Etiologic Risk Factors
- A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis
- Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains
- An Adaptive Allelic Series Featuring Complex Gene Rearrangements
- Feed-Forward Microprocessing and Splicing Activities at a MicroRNA–Containing Intron
- Developmental Stability: A Major Role for in
- A Phenomics-Based Strategy Identifies Loci on , , and Associated with Metabolic Syndrome Phenotype Domains
- Association of , , , , and with Systemic Lupus Erythematosus
- Small RNAs Prevent Transcription-Coupled Loss of Histone H3 Lysine 9 Methylation in
- Successive Increases in the Resistance of to Viral Infection through a Transposon Insertion Followed by a Duplication
- Mutations in a Guanylate Cyclase GCY-35/GCY-36 Modify Bardet-Biedl Syndrome–Associated Phenotypes in
- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains
- Mutations Cause Seckel and Jawad Syndromes
- Zelda Binding in the Early Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition
- Temporal Coordination of Gene Networks by Zelda in the Early Embryo
- Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies
- Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration
- Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function
- Positional Cloning of a Type 2 Diabetes Quantitative Trait Locus; , a Negative Regulator of Insulin Secretion
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Genetic Determinants of Serum Testosterone Concentrations in Men
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy