#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis


Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.


Vyšlo v časopise: A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002332
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002332

Souhrn

Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.


Zdroje

1. KatzJEDlakisMClarkeS 2003 Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2 525 540

2. ChiangPKGordonRKTalJZengGCDoctorBP 1996 S-Adenosylmethionine and methylation. FASEB J 10 471 480

3. SchubertHLBlumenthalRMChengX 2003 Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28 329 335

4. LoenenWAM 2006 S-Adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans 34 330 333

5. GiaeverGChuAMNiLConnellyCRilesL 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387 391

6. HughesTRMartonMJJonesARRobertsCJStoughtonR 2000 Functional discovery via a compendium of expression profiles. Cell 102 109 126

7. GiaeverG 2003 A chemical genomics approach to understanding drug action. Trends Pharmacol Sci 24 444 446

8. GiaeverGFlahertyPKummJProctorMNislowC 2004 Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci USA 101 793 798

9. LumPYArmourCDStepaniantsSBCavetGWolfMK 2004 Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116 121 137

10. LeeWSt OngeRPProctorMFlahertyPJordanMI 2005 Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 1 e24 doi:10.1371/journal.pgen.0010024

11. KungCKenskiDMDickersonSHHowsonRWKuyperLF 2005 Chemical genomic profiling to identify intracellular targets of a multiplex kinase inhibitor. Proc Natl Acad Sci USA 102 3587 3592

12. ButcherRABhullarBSPerlsteinEOMarsischkyGLaBaerJ 2006 Microarray-based method for monitoring yeast overexpression strains reveals small-molecule targets in TOR pathway. Nat Chem Biol 2 103 109

13. ParsonsABLopezAGivoniIEWilliamsDEGrayCA 2006 Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126 611 625

14. HoonSSmithAMWallaceIMSureshSMirandaM 2008 An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4 498 506

15. HillenmeyerMEFungEWildenhainJPierceSEHoonS 2008 The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320 362 365

16. TsvetanovaNGKlassDMSalzmanJBrownPO 2010 Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS ONE 5 e12671 doi:10.1371/journal.pone.0012671

17. CostanzoMBaryshnikovaABellayJKimYSpearED 2010 The genetic landscape of a cell. Science 327 425 431

18. NiewmierzyckaAClarkeS 1999 S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274 814 824

19. CaiHDumlaoDKatzJEClarkeS 2001 Identification of the gene and characterization of the activity of the trans-aconitate methyltransferase from Saccharomyces cerevisiae. Biochemistry 40 13699 13709

20. KatzJEDumlaoDSWassermanJILansdownMGJungME 2004 3-Isopropylmalate is the major endogenous substrate of the Saccharomyces cerevisiae trans-aconitate methyltransferase. Biochemistry 43 5976 5986

21. DumlaoDSHertzNClarkeS 2007 Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae. Biochemistry 47 698 709

22. PetrossianTCClarkeS 2009 Multiple motif scanning to identify methyltransferases from the yeast proteome. Mol Cel Proteomics 8 1516 1526

23. WangGS 1989 Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 26 147 162

24. LaidleyCWCohenECasidaJE 1997 Protein phosphatase in neuroblastoma cells: [3H]cantharidin binding site in relation to cytotoxicity. J Pharmacol Exp Ther 280 1152 1158

25. MoedLShwayderTAChangMW 2001 Cantharidin revisited: a blistering defense of an ancient medicine. Arch Dermatol 137 1357 1360

26. SakoffJAAcklandSPBaldwinMLKeaneMAMcCluskeyA 2002 Anticancer activity and protein phosphatase 1 and 2A inhibition of a new generation of cantharidin analogues. Invest New Drugs 20 1 11

27. HuhJEKangKSChaeCKimHMAhnKS 2004 Roles of p38 and JNK mitogen-activated protein kinase pathways during cantharidin-induced apoptosis in U937 cells. Biochem Pharmacol 67 1811 1818

28. EfferthTRauhRKahlSTomicicMBochzeltH 2005 Molecular modes of action of cantharidin in tumor cells. Biochem Pharmacol 69 811 818

29. LiWXieLChenZZhuYSunY 2010 Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Science 1 8

30. LiYCasidaJE 1992 Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci USA 89 11867 11870

31. HonkanenRE 1993 Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett 330 283 286

32. TsauerWLinJGLinRYHsuFLChiangHC 1997 The effect of cantharidin analogues on xanthine oxidase. Anticancer Res 17 2095 2098

33. WuLTChungJGChenJCTsauerW 2001 Effect of norcantharidin on N-acetyltransferase activity in HepG2 cells. American Journal of Chinese Medicine 32 161 172

34. WangCCWuCHHsiehKJYenKYYangLL 2000 Cytotoxic effects of cantharidin on the growth of normal and carcinoma cells. Toxicology 147 77 87

35. IshiharaHMartinBLBrautiganDLKarakiHOzakiH 1989 Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159 871 877

36. GaschAPSpellmanPTKaoCMCarmel-HarelOEisenMB 2000 Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 4241 4257

37. LiuMTurnerRJWinstoneTLSaetreADyllik-BrenzingerM 2000 Escherichia coli TehB requires S-Adenosylmethionine as a cofactor to mediate tellurite resistance. J Bacteriol 182 6509 6513

38. KleeneSJToewsMLAdlerJ 1977 Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J Biol Chem 252 3214 3218

39. EbersonLWelinderH 1971 Cyclic anhydrides. III. Equilibrium constants for the acid-anhydride equilibrium in aqueous solutions of certain vicinal diacids. J Am Chem Soc 93 5821 5826

40. TongAHYEvangelistaMParsonsABXuHBaderGD 2001 Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294 2364 2368

41. PierceSEDavisRWNislowCGiaeverG 2007 Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2 2958 2974

42. HergovichAStegertMRSchmitzDHemmingsBA 2006 NDR kinases regulate essential cell processes from yeast to humans. Nature Rev Mol Cell Biol 7 253 264

43. GuanXLWenkMR 2006 Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23 465 477

44. SimsKJSpassievaSDVoitEOObiedLM 2004 Yeast sphingolipid metabolism: clues and connections. Biochem Cell Biol 82 45 61

45. EjsingCSSampaioJLSurendranathVDuchoslavEEkroosK 2009 Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106 2136 2141

46. GuanXLSouzaCMPichlerHDewhurstGSchaadO 2009 Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol Biol Cell 20 2083 2095

47. CzabanyTWagnerAZweytickDLohnerKLeitnerE 2008 Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283 17065 17074

48. GardockiMEJaniNLopesJM 2005 Phosphatidylinositol biosynthesis: biochemistry and regulation. Bioch Biophyscia Acta 89 100

49. YinHLJanmeyPA 2003 Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65 761 789

50. JanmeyPALinbergU 2004 Cytoskeletal regulation: rich in lipids. Nature Mol Cell Biol 5 658 666

51. RenGVajjhalaPLeeJSWinsorBMunnAL 2006 The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 70 37 120

52. LevinDE 2005 Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69 262 291

53. DingDGreenbergML 2003 Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Mol Microbiol 47 373 381

54. SenguptaNDattaSCSenguptaD 1981 Platelet and erythrocyte membrane lipid and phospholipid patterns in different types of mental patients. Biochem Med 25 267 275

55. StruneckaAKolesarovaJHaskovecL 1985 Lithium increases turnover of phospholipids in flight muscles of Periplaneta Americana. L Physiol Bohemoslov 34 543 547

56. RahierASchmittPHussBBenvenistePPommerEH 1986 Chemical structure activity relationships of the inhibition of sterol biosynthesis by N-substituted morpholines in higher plant cells. Pestic Biochem Physiol 25 112 124

57. MarcireauCGuillotonMKarstF 1990 In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34 989 993

58. LiepkalnsVALeliUHauserG 1993 Alterations in the metabolism of choline-containing phospholipids by lithium and carbachol in SH-SY5Y neuroblastoma cells. Biol Psychiatry 34 51 58

59. JancovaPAnzenbacherPAnzenbacherovaE 2010 Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154 103 116

60. WeinshilboumR 1988 Pharmacogenetics of methylation: relationship to drug metabolism. Clin Biochem 21 201 210

61. GrosLDelaporteCFreySDecesseJde Saint-VincentBR 2003 Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res 63 164 171

62. MishraMVBishtKSSunLMuldoon-JacobsKAwwardR 2008 DNMT1 as a molecular target in a multimodality-resistant phenotype in tumor cells. Mol Cancer Res 6 243 249

63. TurroSInglemo-TorresMEstanyolJMTebarFFernandezMA 2006 Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7 1254 1269

64. LorenzRTParksLW 1991 Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants. Antimicrob Agents Chemother 35 1532 1537

65. BanerjeeRZouC 2005 Redox regulation and reaction mechanism of human cystathionine-≤-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 43 144 156

66. GrilloMAColombattoS 2008 S-adenosylmethionine and its products. Amino Acids 34 187 193

67. TehlivetsOHasslacherMKohlweinSD 2004 S-Adenosyl-L-homocysteine hydrolase in yeast: key enzyme of methylation metabolism and coordinated regulation with phospholipid synthesis. FEBS Lett 577 501 506

68. MalanovicNStreithIWolinskiHRechbergerGKohlweinSD 2008 S-Adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast. J Biol Chem 283 23989 23999

69. DesfargesLDurrensPJuguelinHCassagneCBonneuM 1993 Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 9 267 277

70. BalguerieABagnatMBonneuMAigleMBretonAM 2002 Rvs161p and sphingolipids are required for actin repolarization following salt stress. Eukaryot Cell 1 1021 1031

71. GermannMSwainEBergmanLNickelsJT 2005 Characterizing the sphingolipid signaling pathway that remediates defects associated with loss of the yeast amphiphysin-like orthologs, Rvs161p and Rvs167p. J Biol Chem 280 4270 4278

72. KovacsPPinterM 2001 Effects of phosphoprotein phosphatase inhibitors (phenylarsine oxide and cantharidin) on Tetrahymena. Cell Biochem Func 19 197 205

73. GustinMCAlbertynJAlexanderMDavenportK 1998 MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62 1264 1300

74. NunezLRJeschSAGasparMLAlmaguerCVilla-GarciaM 2008 Cell Wall Integrity MAPK pathway is essential for lipid homeostasis. J Biol Chem 283 34204 34217

75. ZhangXSkrzypekMSLesterRLDicksonRC 2001 Elevation of endogenous sphingolipid long-chain base phosphates kills Saccharomyces cerevisiae cells. Curr Genet 40 221 233

76. ZhangXLesterRLDicksonRC 2004 Pil1p and Lsp1 negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pck1p and Ypk1p. J Biol Chem 279 22030 22038

77. EricsonEHoonSSt OngeRPGiaeverGNislowC 2010 Exploring gene function and drug action using chemogenomic dosage assays. Methods Enzymol 470 233 255

78. CollartMAOlivieroS 1993 Preparation of yeast RNA. Current Protocols in Molecular Biology 13.12.1 13.12.5

79. JuneauKPalmCMirandaMDavisRW 2007 High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing. Proc Natl Acad Sci USA 104 1522 1527

80. PerocchiFXuZClauder-MunsterSSteinmetzLM 2007 Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nuc Acids Research 35 e128

81. GelperinDMWhiteMAWilkinsonMLKonYKungLA 2005 Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Gen Dev 19 2816 2826

82. RigautGShevchenkoARutzBWilmMMannM 1999 A generic protein purification method for protein complex characterization and proteome exploration. Nature 17 1030 1032

83. BennettBDKimballEHGaoMOsterhoutRVan DienSJRabinowitzJD 2009 Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5 593 599

84. MurrayEDJrClarkeS 1986 Metabolism of a synthetic L-isoaspartyl-containing hexapeptide in erythrocyte extracts. Enzymatic methyl esterification is followed by nonenzymatic succinimide formation. J Biol Chem 261 306 312

85. GuanXLRiezmanIWenkMRRiezmanH 2010 Yeast lipid analysis and quantification by mass spectrometry. Meth Enzym 470 369 391

86. TongAHBooneC 2006 Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 313 171 192

87. BaryshnikovaACostanzoMKimYDingHKohJ 2010 Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7 1017 1024

88. VizeacoumarFJVredenWNFagarasanuMEitzenGAAitchisonJD 2006 The dynamin-like protein Vps1p of the yeast Saccharomyces cerevisiae associates with peroxisomes in a Pex19p-dependent manner. J Biol Chem 281 12817 12823

89. GietzRDWoodsRA 2002 Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350 87 96

90. RobinsonMDGrigullJMohammadNHughesTR 2002 FunSpec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3 35

91. ConnerthMGrillitschKKöfelerHDaumG 2009 Analysis of lipid particles from yeast. Methods Mol Biol 579 359 374

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#