#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation


Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.


Vyšlo v časopise: A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation. PLoS Genet 5(1): e32767. doi:10.1371/journal.pgen.1000327
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000327

Souhrn

Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.


Zdroje

1. IafrateAJ

FeukL

RiveraMN

ListewnikML

DonahoePK

2004 Detection of large-scale variation in the human genome. Nat Genet 36 949 951

2. KorbelJO

UrbanAE

AffourtitJP

GodwinB

GrubertF

2007 Paired-end mapping reveals extensive structural variation in the human genome. Science 318 420 426

3. SebatJ

LakshmiB

TrogeJ

AlexanderJ

YoungJ

2004 Large-scale copy number polymorphism in the human genome. Science 305 525 528

4. RedonR

IshikawaS

FitchKR

FeukL

PerryGH

2006 Global variation in copy number in the human genome. Nature 444 444 454

5. WongKK

deLeeuwRJ

DosanjhNS

KimmLR

ChengZ

2007 A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80 91 104

6. KhajaR

ZhangJ

MacDonaldJR

HeY

Joseph-GeorgeAM

2006 Genome assembly comparison identifies structural variants in the human genome. Nat Genet 38 1413 1418

7. NewmanTL

TuzunE

MorrisonVA

HaydenKE

VenturaM

2005 A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15 1344 1356

8. FieglerH

RedonR

AndrewsD

ScottC

AndrewsR

2006 Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 16 1566 1574

9. KomuraD

ShenF

IshikawaS

FitchKR

ChenW

2006 Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16 1575 1584

10. LupskiJR

2007 Structural variation in the human genome. N Engl J Med 356 1169 1171

11. TuzunE

SharpAJ

BaileyJA

KaulR

MorrisonVA

2005 Fine-scale structural variation of the human genome. Nat Genet 37 727 732

12. BruderCEG

PoitrowskiA

GijsbersAACJ

AnderssonR

EricksonS

2008 Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82 1 9

13. DumasL

KimYH

Karimpour-FardA

CoxM

HopkinsJ

2007 Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 17 1266 1277

14. NahonJL

2003 Birth of ‘human-specific’ genes during primate evolution. Genetica 118 193 208

15. BaileyJA

EichlerEE

2006 Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7 552 564

16. StankiewiczP

ShawCJ

WithersM

InoueK

LupskiJR

2004 Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 14 2209 2220

17. LupskiJR

1998 Genomic disorders: structural features of the genome can lead to DNA rearrangement and human disease traits. Trends Genet 14 417 422

18. StankiewiczP

LupskiJR

2002 Genome architecture, rearrangements and genomic disorders. Trends Genet 18 74 82

19. ShawCJ

LupskiJR

2005 Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 116 1 7

20. LupskiJR

StankiewiczP

2005 Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1 e49 doi:10.1371/journal.pgen.0010049

21. LupskiJR

2006 Genome structural variation and sporadic disease traits. Nat Genet 38 974 976

22. LeeJA

CarvalhoCM

LupskiJR

2007 A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131 1235 1247

23. NobileCT

RizziL

SimionatiF

NigroB

CardazzoV

PatarnelloB

ValleT

DanieliG, GA

2002 Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum Genet 110 418 421

24. InoueK

OsakaH

ThurstonVC

ClarkeJT

YoneyamaA

2002 Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 71 838 853

25. LeeJA

2006 Molecular analysis of the non-recurrent genomic duplications causing Pelizaeus-Merzbacher disease and its allelic disorder paraplegia type 2. 371 [PhD thesis] Houston (Texas): Department of Molecular and Human Genetics, Baylor College of Medicine

26. PotockiLB, W

Treadwell-DeeringD

CarvalhoCM

EifertA

FriedmanEM

2007 Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 80 633 649

27. VissersLE

StankiewiczP

YatsenkoSA

CrawfordE

CreswickH

2007 Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies. Hum Genet 121 697 709

28. ChenJM

ChuzhanovaN

StensonPD

FérecC

CooperDN

2005 Intrachromosomal serial replication slippage in trans gives rise to diverse genomic rearrangements involving inversions. Hum Mutat 26 362 373

29. FérecC

CasalsT

ChuzhanovaN

MacekMJ

BienvenuT

2006 Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. Eur J Hum Genet 14 562 567

30. del GaudioD

FangP

ScagliaF

WardPA

CraigenWJ

2006 Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 8 784 792

31. SheenCR

JewellUR

MorrisCM

BrennanSO

FérecC

2007 Double complex mutations involving F8 and FUNDC2 caused by distinct break-induced replication. Hum Mutat 28 1198 2006

32. StankiewiczP

ShawCJ

DapperJD

WakuiK

ShafferLG

2003 Genome architecture catalyzes nonrecurrent chromosomal rearrangements. Am J Hum Genet 72 1101 1116

33. LeeJA

InoueK

CheungSW

ShawCA

StankiewiczP

2006 Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease. Hum Mol Genet 15 2250 2265

34. LeeJA

MadridRE

SperleK

RittersonCM

HobsonGM

2006 Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol 59 398 403

35. SlackA

ThorntonPC

MagnerDB

RosenbergSM

HastingsPJ

2006 On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet 2 e48 doi:10.1371/journal.pgen.0020048

36. VolikS

RaphaelBJ

HuangG

StrattonMR

BignelG

2006 Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res 16 394 404

37. BignellGR

SantariusT

PoleJC

ButlerAP

PerryJ

2007 Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res 17 1296 1303

38. CanningS

DryjaTP

1989 Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene. Proc Natl Acad Sci U S A 86 5044 5048

39. KohnoT

YokataJ

2006 Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5 1273 1281

40. ZhangY

Zeleznik-LeN

EmmanuelN

JayathilakaN

ChenJ

2004 Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16). Genes Chromosomes Cancer 41 257 265

41. ZhangY

StrisselP

StrickR

ChenJ

NuciforaG

2004 Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc Natl Acad Sci U S A 99 3070 3075

42. ChenC

UmezuK

KolodnerRD

1998 Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2 9 22

43. CairnsJ

FosterPL

1991 Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128 695 701

44. HastingsPJ

BullHJ

KlumpJR

RosenbergSM

2000 Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103 723 731

45. HastingsPJ

SlackA

PetrosinoJF

RosenbergSM

2004 Adaptive amplification and point mutation are independent mechanisms: Evidence for various stress-inducible mutation mechanisms. PLoS Biol 2 e399 doi:10.1371/journal.pbio.0020399

46. KugelbergE

KofoidE

ReamsAB

AnderssonDI

RothJR

2006 Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci U S A 103 17319 17324

47. HastingsPJ

2007 Adaptive amplification. Critical Rev Biochem Mol Biol 42 1 13

48. FriedbergEC

WalkerGC

SiedeW

WoodRD

SchultzRA

2005 DNA Repair and Mutagenesis Washington (DC) ASM Press 1164

49. IkedaH

ShimizuH

UkitaT

KumagaiM

1995 A novel assay for illegitimate recombination in Escherichia coli: stimulation of lambda bio transducing phage formation by ultra-violet light and its independence from RecA function. Adv Biophys 31 197 208

50. AlbertiniAM

HoferM

CalosMP

MillerJH

1982 On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29 319 328

51. FarabaughPJ

SchmeissnerU

HoferM

MillerJH

1978 Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol 126 847 857

52. ShimizuH

YamaguchiH

AshizawaY

KohnoY

AsamiM

1997 Short-homology-independent illegitimate recombination in Escherichia coli: distinct mechanism from short-homology-dependent illegitimate recombination. J Mol Biol 266 297 305

53. BzymekM

LovettST

2001 Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A 98 8319 8325

54. PonderRG

FonvilleNC

RosenbergSM

2005 A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19 791 804

55. PayenC

KoszulR

DujonB

FischerG

2008 Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4 e1000175 doi:10.1371/journal.pgen.1000175

56. BranzeiD

FoianiM

2007 Template Switching: From Replication Fork Repair to Genome Rearrangements. Cell 131 1228 1230

57. MerrihewRV

MarburgerK

PenningtonSL

RothDB

WilsonJH

1996 High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol 16 10 18

58. MorrowDM

ConnellyC

HieterP

1997 “Break-copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147 371 382

59. McEachernMJ

HaberJE

2006 Break-Induced Replication and Recombinational Telomere Elongation in Yeast. Annu Rev Biochem 75 111 135

60. SmithCE

LlorenteB

SymingtonLS

2007 Template switching during break-induced replication. Nature 447 102 105

61. LydeardJR

JainS

YamaguchiM

HaberJE

2007 Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448 820 823

62. MotamediM

SzigetySK

RosenbergSM

1999 Double-strand-break repair in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev 13 2889 2903

63. LlorenteB

SmithCE

SymingtonLS

2008 Break-induced replication: what is it and what is it for? Cell Cycle 7 859 864

64. HeiterP

MannC

SnyderM

DavisRW

1985 Mitotic stability of yeast chromosomes: A colony color assay that measures nondisjunction and chromosome loss. Cell 40 381 392

65. DeemA

BarkerK

VanhulleK

DowningB

VaylA

2008 Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179 1845 1860

66. SchmidtKH

WuJ

KolodnerRD

2006 Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26 5406 5420

67. BautersM

Van EschH

FriezMJ

Boespflug-TanguyO

ZenkerM

2008 Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res 18 847 858

68. LovettST

HurleyRL

SuteraVAJr

AubuchonRH

LebedevaMA

2002 Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160 851 859

69. LiskayRM

LetsouA

StachelekJL

1987 Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115 161 167

70. ReiterLT

HastingsPJ

NelisE

De JongheP

Van BroeckhovenC

1998 Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet 62 1023 1033

71. VanHulleK

LemoineFJ

NarayananV

DowningB

HullK

2007 Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 2601 2614

72. DavisAP

SymingtonLS

2004 RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24 2344 2351

73. LeS

MooreJK

HaberJE

GreiderCW

1999 RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152 143 152

74. TengSC

ZakianVA

1999 Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19 8083 8093

75. BentleyJ

DiggleCP

HarndenP

KnowlesMA

KiltieAE

2004 DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 32 5249 5259

76. CorneoB

WendlandRL

DerianoL

CuiX

KleinIA

2007 Rag mutations reveal robust alternative end joining. Nature 449 483 486

77. LisbyM

BarlowJH

BurgessRC

RothsteinR

2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713

78. PenningtonJM

RosenbergSM

2007 Spontaneous DNA breakage in single living cells of Escherichia coli. Nat Gen 39 797 802

79. Saleh-GohariN

BryantHE

SchultzN

ParkerKM

CasselTN

2005 Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25 7158 7169

80. McIlwraithMJ

VaismanA

LiuY

FanningE

WoodgateR

2005 Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20 783 792

81. KawamotoT

ArakiK

SonodaE

YamashitaYM

HaradaK

2005 Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20 793 799

82. CannistraroVJ

TaylorJS

2007 Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. J Biol Chem 282 11188 11196

83. RothDB

ChangXB

WilsonJH

1989 Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9 3049 3057

84. YoungSD

MarshallRS

HillRP

1988 Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A 85 9533 9537

85. CoquelleA

ToledoF

SternS

BiethA

DebatisseM

1998 A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2 259 265

86. SubarskyP

HillRP

2003 The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20 237 250

87. BindraRSS

ChafferPJ

MengA

WooJ

MåseideK

2004 Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol 24 8504 8518

88. BindraRS

GlazerPM

2007 Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26 2048 2057

89. HuangLE

BindraRS

GlazerPM

HarrisAL

2007 Hypoxia-induced genetic instability–a calculated mechanism underlying tumor progression. J Mol Med 85 139 148

90. BindraRS

CrosbyME

GlazerPM

2007 Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26 249 260

91. McVeyM

AdamsM

Staeva-VieiraE

SekelskyJJ

2004 Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila. Genetics 167 699 705

92. BindraRS

GlazerPM

2007 Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252 93 103

93. MihaylovaVT

BindraRS

YuanJ

CampisiD

NarayananL

2003 Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23 3265 3273

94. MyungK

ChenC

KolodnerRD

2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411 1073 1076

95. LombardoM-J

AponyiI

RosenbergSM

2004 General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166 669 680

96. Fishman-LobellJ

HaberJE

1992 Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 480 484

97. MortensenUH

BendixenHC

SunjevaricI

RothsteinR

1996 DNA strand annealing is promoted by yeast Rad52 protein. Proc Natl Acad Sci U S A 93 10729 10734

98. TsukamotoY

KatoJ

IkedaH

1996 Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics 142 383 391

99. WuY

KantakeN

SugiyamaT

KowalczykowskiSC

2008 Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem 283 14883 14892

100. LeeK

LeeSE

2007 Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176 2003 2014

101. LupskiJR

2007 An evolution revolution provides further revelation. Bioessays 29 1182 1184

102. OhnoS

1970 Evolution by gene duplication Berlin, New York Springer-Verlag 160

103. HurlesM

2004 Gene duplication: the genomic trade in spare parts. PLoS Biol 2 e206 doi:10.1371/journal.pbio.0020206

104. HittingerCT

CarrollSB

2007 Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449 677 681

105. SpenceJE

PerciaccanteRG

GreigGM

WillardHF

LedbetterDH

1988 Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42 217 226

106. LeeJA

LupskiJR

2006 Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52 103 121

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2009 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#