NEDD4 family ubiquitin ligases associate with LCMV Z’s PPXY domain and are required for virus budding, but not via direct ubiquitination of Z

Autoři: Christopher M. Ziegler aff001;  Loan Dang aff001;  Philip Eisenhauer aff001;  Jamie A. Kelly aff001;  Benjamin R. King aff001;  Joseph P. Klaus aff001;  Inessa Manuelyan aff001;  Ethan B. Mattice aff002;  David J. Shirley aff003;  Marion E. Weir aff004;  Emily A. Bruce aff001;  Bryan A. Ballif aff004;  Jason Botten aff001
Působiště autorů: Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America aff001;  Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America aff002;  Ixis LLC, Data Science Division, Burlington, Vermont, United States of America aff003;  Department of Biology, University of Vermont, Burlington, Vermont, United States of America aff004;  Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America aff005
Vyšlo v časopise: NEDD4 family ubiquitin ligases associate with LCMV Z’s PPXY domain and are required for virus budding, but not via direct ubiquitination of Z. PLoS Pathog 15(11): e1008100. doi:10.1371/journal.ppat.1008100
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.ppat.1008100


Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1–3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment.

Klíčová slova:

Small interfering RNAs – Protein domains – Membrane proteins – Lysine – Virions – Ubiquitination – Interaction networks – Ubiquitin ligases


1. Schoneberg J, Lee I-H, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nature Reviews Molecular Cell Biology. 2017;18(1):5–17. doi: 10.1038/nrm.2016.121 27703243

2. Votteler J, Sundquist Wesley I. Virus Budding and the ESCRT Pathway. Cell Host & Microbe. 2013;14(3):232–41.

3. Katzmann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002;3(12):893–905. doi: 10.1038/nrm973 12461556

4. Rieder SE, Banta LM, Köhrer K, McCaffery JM, Emr SD. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996;7(6):985–99. doi: 10.1091/mbc.7.6.985 8817003

5. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992;3(12):1389–402. doi: 10.1091/mbc.3.12.1389 1493335

6. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proceedings of the National Academy of Sciences. 2012;109(11):4146–51. doi: 10.1073/pnas.1200448109 22315426

7. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology. 2013;200(4):373–83. doi: 10.1083/jcb.201211138 23420871

8. Hurley JH. ESCRTs are everywhere. The EMBO Journal. 2015;34(19):2398–407. doi: 10.15252/embj.201592484 26311197

9. Lee J-A, Beigneux A, Ahmad ST, Young SG, Gao F-B. ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration. Current Biology. 2007;17(18):1561–7. doi: 10.1016/j.cub.2007.07.029 17683935

10. Rusten TE, Vaccari T, Lindmo K, Rodahl LMW, Nezis IP, Sem-Jacobsen C, et al. ESCRTs and Fab1 Regulate Distinct Steps of Autophagy. Current Biology. 2007;17(20):1817–25. doi: 10.1016/j.cub.2007.09.032 17935992

11. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, et al. Microautophagy of Cytosolic Proteins by Late Endosomes. Developmental Cell. 2011;20(1):131–9. doi: 10.1016/j.devcel.2010.12.003 21238931

12. Carlton JG, Martin-Serrano J. Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery. Science. 2007;316(5833):1908–12. doi: 10.1126/science.1143422 17556548

13. Morita E, Sandrin V, Chung H-Y, Morham SG, Gygi SP, Rodesch CK, et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. The EMBO Journal. 2007;26(19):4215–27. doi: 10.1038/sj.emboj.7601850 PMC2230844. 17853893

14. Olmos Y, Carlton JG. The ESCRT machinery: new roles at new holes. Curr Opin Cell Biol. 2016;38:1–11. doi: 10.1016/ 26775243

15. McCullough J, Colf LA, Sundquist WI. Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem. 2013;82:663–92. Epub 2013/03/27. doi: 10.1146/annurev-biochem-072909-101058 23527693; PubMed Central PMCID: PMC4047973.

16. Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH. Structural Basis for Endosomal Targeting by the Bro1 Domain. Developmental Cell. 2005;8(6):937–47. doi: 10.1016/j.devcel.2005.04.001 15935782

17. McCullough J, Fisher RD, Whitby FG, Sundquist WI, Hill CP. ALIX-CHMP4 interactions in the human ESCRT pathway. Proceedings of the National Academy of Sciences. 2008;105(22):7687–91. doi: 10.1073/pnas.0801567105 18511562

18. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85. doi: 10.1038/ncb2502 22660413

19. Bache KG, Brech A, Mehlum A, Stenmark H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. The Journal of Cell Biology. 2003;162(3):435–42. doi: 10.1083/jcb.200302131 12900395

20. Bache KG, Raiborg C, Mehlum A, Stenmark H. STAM and Hrs Are Subunits of a Multivalent Ubiquitin-binding Complex on Early Endosomes. J Biol Chem. 2003;278(14):12513–21. doi: 10.1074/jbc.M210843200 12551915

21. Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012;28:337–62. Epub 2012/07/27. doi: 10.1146/annurev-cellbio-092910-154152 22831642.

22. Göttlinger HG, Dorfman T, Sodroski JG, Haseltine WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proceedings of the National Academy of Sciences. 1991;88(8):3195–9. doi: 10.1073/pnas.88.8.3195 2014240

23. Huang M, Orenstein JM, Martin MA, Freed EO. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol. 1995;69(11):6810–8. 7474093

24. Puffer BA, Parent LJ, Wills JW, Montelaro RC. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol. 1997;71(9):6541–6. 9261374

25. Parent LJ, Bennett RP, Craven RC, Nelle TD, Krishna NK, Bowzard JB, et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol. 1995;69(9):5455–60. 7636991

26. Schmitt AP, Leser GP, Morita E, Sundquist WI, Lamb RA. Evidence for a New Viral Late-Domain Core Sequence, FPIV, Necessary for Budding of a Paramyxovirus. J Virol. 2005;79(5):2988–97. doi: 10.1128/JVI.79.5.2988-2997.2005 15709019

27. Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP. Mumps Virus Matrix, Fusion, and Nucleocapsid Proteins Cooperate for Efficient Production of Virus-Like Particles. J Virol. 2009;83(14):7261–72. doi: 10.1128/JVI.00421-09 19439476

28. Martin-Serrano J, Zang T, Bieniasz PD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med. 2001;7(12):1313–9. doi: 10.1038/nm1201-1313 11726971

29. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, et al. Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding. Cell. 2001;107(1):55–65. doi: 10.1016/s0092-8674(01)00506-2 11595185

30. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proceedings of the National Academy of Sciences. 2001;98(14):7724–9. doi: 10.1073/pnas.131059198 11427703

31. Strack B, Calistri A, Craig S, Popova E, Göttlinger HG. AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding. Cell. 2003;114(6):689–99. doi: 10.1016/s0092-8674(03)00653-6 14505569

32. Martin-Serrano J, Yaravoy A, Perez-Caballero D, Bieniasz PD. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proceedings of the National Academy of Sciences. 2003;100(21):12414–9. doi: 10.1073/pnas.2133846100 14519844

33. von Schwedler UK, Stuchell M, Müller B, Ward DM, Chung H-Y, Morita E, et al. The Protein Network of HIV Budding. Cell. 2003;114(6):701–13. doi: 10.1016/s0092-8674(03)00714-1 14505570

34. Chen HI, Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proceedings of the National Academy of Sciences. 1995;92(17):7819–23.

35. Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene. 2004;23(11). doi: 10.1038/sj.onc.1207436 15021885.

36. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CSH, Yu J, et al. WW Domains Provide a Platform for the Assembly of Multiprotein Networks. Molecular and Cellular Biology. 2005;25(16):7092–106. doi: 10.1128/MCB.25.16.7092-7106.2005 16055720

37. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. Embo j. 1996;15(10):2371–80. Epub 1996/05/15. 8665844; PubMed Central PMCID: PMC450167.

38. Han Z, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Harty RN. ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. J Virol. 2016;90(20):9163–71. doi: 10.1128/JVI.01078-16 27489272

39. Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: Implications for filovirus budding. Proceedings of the National Academy of Sciences. 2000;97(25):13871–6. doi: 10.1073/pnas.250277297 11095724

40. Blot V, Perugi F, Gay B, Prévost M-C, Briant L, Tangy F, et al. Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. Journal of Cell Science. 2004;117(11):2357–67. doi: 10.1242/jcs.01095 15126635

41. Strack B, Calistri A, Accola MA, Palù G, Göttlinger HG. A role for ubiquitin ligase recruitment in retrovirus release. Proceedings of the National Academy of Sciences. 2000;97(24):13063–8. doi: 10.1073/pnas.97.24.13063 11087860

42. Vana ML, Tang Y, Chen A, Medina G, Carter C, Leis J. Role of Nedd4 and ubiquitination of Rous sarcoma virus Gag in budding of virus-like particles from cells. J Virol. 2004;78(24):13943–53. Epub 2004/11/27. doi: 10.1128/JVI.78.24.13943-13953.2004 15564502; PubMed Central PMCID: PMC533940.

43. Heidecker G, Lloyd PA, Soheilian F, Nagashima K, Derse D. The Role of WWP1-Gag Interaction and Gag Ubiquitination in Assembly and Release of Human T-Cell Leukemia Virus Type 1. J Virol. 2007;81(18):9769–77. doi: 10.1128/JVI.00642-07 %J Journal of Virology. 17609263

44. Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, et al. Rhabdoviruses and the Cellular Ubiquitin-Proteasome System: a Budding Interaction. J Virol. 2001;75(22):10623–9. doi: 10.1128/JVI.75.22.10623-10629.2001 11602704

45. Patnaik A, Chau V, Wills JW. Ubiquitin is part of the retrovirus budding machinery. 2000;97(24):13069–74. doi: 10.1073/pnas.97.24.13069 %J Proceedings of the National Academy of Sciences. 11087861

46. Ott DE, Coren LV, Sowder RC, Adams J, Schubert U. Retroviruses Have Differing Requirements for Proteasome Function in the Budding Process. 2003;77(6):3384–93. doi: 10.1128/JVI.77.6.3384–3393.2003 %J Journal of Virology.

47. Zhadina M, Bieniasz PD. Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding. PLoS Pathog. 2010;6(10):e1001153. doi: 10.1371/journal.ppat.1001153 20975941

48. Joshi A, Munshi U, Ablan SD, Nagashima K, Freed EO. Functional Replacement of a Retroviral Late Domain by Ubiquitin Fusion. 2008;9(11):1972–83. doi: 10.1111/j.1600-0854.2008.00817.x 18817521

49. Shields SB, Oestreich AJ, Winistorfer S, Nguyen D, Payne JA, Katzmann DJ, et al. ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. The Journal of Cell Biology. 2009;185(2):213–24. doi: 10.1083/jcb.200811130 19380877

50. Urata S, Yasuda J. Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40. J Gen Virol. 2010;91(1):228–34. doi: 10.1099/vir.0.015495–0

51. Yasuda J, Nakao M, Kawaoka Y, Shida H. Nedd4 Regulates Egress of Ebola Virus-Like Particles from Host Cells. J Virol. 2003;77(18):9987–92. doi: 10.1128/JVI.77.18.9987-9992.2003 12941909

52. Sakurai A, Yasuda J, Takano H, Tanaka Y, Hatakeyama M, Shida H. Regulation of human T-cell leukemia virus type 1 (HTLV-1) budding by ubiquitin ligase Nedd4. Microbes Infect. 2004;6(2):150–6. doi: 10.1016/j.micinf.2003.10.011 14998512

53. Segura-Morales C, Pescia C, Chatellard-Causse C, Sadoul R, Bertrand E, Basyuk E. Tsg101 and Alix Interact with Murine Leukemia Virus Gag and Cooperate with Nedd4 Ubiquitin Ligases during Budding. J Biol Chem. 2005;280(29):27004–12. doi: 10.1074/jbc.M413735200 15908698

54. Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. The Journal of Cell Biology. 2005;168(1):89–101. doi: 10.1083/jcb.200408155 15623582

55. Klaus JP, Eisenhauer P, Russo J, Mason AB, Do D, King B, et al. The intracellular cargo receptor ERGIC-53 is required for the production of infectious arenavirus, coronavirus, and filovirus particles. Cell Host Microbe. 2013;14(5):522–34. Epub 2013/11/19. doi: 10.1016/j.chom.2013.10.010 24237698; PubMed Central PMCID: PMC3999090.

56. King BR, Hershkowitz D, Eisenhauer PL, Weir ME, Ziegler CM, Russo J, et al. A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol. 2017;91(15). doi: 10.1128/jvi.00763-17 28539447

57. Ziegler CM, Eisenhauer P, Kelly JA, Dang LN, Beganovic V, Bruce EA, et al. A Proteomics Survey of Junín Virus Interactions with Human Proteins Reveals Host Factors Required for Arenavirus Replication. J Virol. 2018;92(4). doi: 10.1128/jvi.01565-17 29187543

58. Iwasaki M, Minder P, Caì Y, Kuhn JH, Yates JR III, Torbett BE, et al. Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses. PLOS Pathogens. 2018;14(2):e1006892. doi: 10.1371/journal.ppat.1006892 29462184

59. Khamina K, Lercher A, Caldera M, Schliehe C, Vilagos B, Sahin M, et al. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLOS Pathogens. 2017;13(12):e1006758. doi: 10.1371/journal.ppat.1006758 29261807

60. Gale TV, Horton TM, Hoffmann AR, Branco LM, Garry RF. Host Proteins Identified in Extracellular Viral Particles as Targets for Broad-Spectrum Antiviral Inhibitors. J Proteome Res. 2019;18(1):7–17. doi: 10.1021/acs.jproteome.8b00204 30351952

61. Radoshitzky SR, Bào Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, et al. Past, present, and future of arenavirus taxonomy. Archives of Virology. 2015;160(7):1851–74. doi: 10.1007/s00705-015-2418-y 25935216

62. Maes P, Alkhovsky SV, Bào Y, Beer M, Birkhead M, Briese T, et al. Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology. 2018;163(8):2295–310. doi: 10.1007/s00705-018-3843-5 29680923

63. McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A Prospective Study of the Epidemiology and Ecology of Lassa Fever. J Infect Dis. 1987;155(3):437–44. doi: 10.1093/infdis/155.3.437 3805771

64. Charrel RN, Lamballerie Xd. Arenaviruses other than Lassa virus. Antiviral Research. 2003;57(1–2):89–100. doi: 10.1016/s0166-3542(02)00202-4 12615305

65. Shaffer JG, Grant DS, Schieffelin JS, Boisen ML, Goba A, Hartnett JN, et al. Lassa Fever in Post-Conflict Sierra Leone. PLOS Neglected Tropical Diseases. 2014;8(3):e2748. doi: 10.1371/journal.pntd.0002748 24651047

66. Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. 2019;363(6422):74–7. doi: 10.1126/science.aau9343 %J Science. 30606844

67. Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. 2018;379(18):1745–53. doi: 10.1056/NEJMoa1804498 30332564.

68. Oloniniyi OK, Unigwe US, Okada S, Kimura M, Koyano S, Miyazaki Y, et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLOS Neglected Tropical Diseases. 2018;12(11):e0006971. doi: 10.1371/journal.pntd.0006971 30500827

69. Armstrong C, Lillie RD. Experimental Lymphocytic Choriomeningitis of Monkeys and Mice Produced by a Virus Encountered in Studies of the 1933 St. Louis Encephalitis Epidemic. Public Health Reports (1896–1970). 1934;49(35):1019–27. doi: 10.2307/4581290

70. Bonthius DJ. Lymphocytic choriomeningitis virus: An under-recognized cause of neurologic disease in the fetus, child, and adult. Seminars in pediatric neurology. 2012;19(3):89–95. doi: 10.1016/j.spen.2012.02.002 PMC4256959. 22889536

71. Barton LL, Mets MB, Beauchamp CL. Lymphocytic choriomeningitis virus: Emerging fetal teratogen. American Journal of Obstetrics & Gynecology. 2002;187(6):1715–6. doi: 10.1067/mob.2002.126297 12501090

72. Strausbaugh LJ, Barton LL, Mets MB. Congenital Lymphocytic Choriomeningitis Virus Infection: Decade of Rediscovery. Clinical Infectious Diseases. 2001;33(3):370–4. doi: 10.1086/321897 11438904

73. Fischer SA, Graham MB, Kuehnert MJ, Kotton CN, Srinivasan A, Marty FM, et al. Transmission of Lymphocytic Choriomeningitis Virus by Organ Transplantation. N Engl J Med. 2006;354(21):2235–49. doi: 10.1056/NEJMoa053240 16723615.

74. Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: Implications for antiviral strategies. Proc Natl Acad Sci USA. 2003;100(22):12978–83. doi: 10.1073/pnas.2133782100 ISI:000186301100085. 14563923

75. Strecker T, Eichler R, Meulen Jt, Weissenhorn W, Dieter Klenk H, Garten W, et al. Lassa Virus Z Protein Is a Matrix Protein Sufficient for the Release of Virus-Like Particles. J Virol. 2003;77(19):10700–5. doi: 10.1128/JVI.77.19.10700-10705.2003 12970458

76. Ziegler CM, Eisenhauer P, Bruce EA, Weir ME, King BR, Klaus JP, et al. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles. PLoS Pathog. 2016;12(3):e1005501. doi: 10.1371/journal.ppat.1005501 27010636; PubMed Central PMCID: PMC4806877.

77. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research. 2009;37(1):1–13. doi: 10.1093/nar/gkn923 19033363

78. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 2008;4:44.

79. Rowe WP, Murphy FA, Bergold GH, Casals J, Hotchin J, Johnson KM, et al. Arenoviruses: Proposed Name for a Newly Defined Virus Group. J Virol. 1970;5(5):651–2. 4986852

80. Gattiker A, Bairoch A, Sigrist CJA, de Castro E, Gasteiger E, Hulo N, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research. 2006;34(suppl_2):W362–W5. doi: 10.1093/nar/gkl124 %J Nucleic Acids Research. 16845026

81. Bridge A, Cuche BA, de Castro E, Xenarios I, Cerutti L, Bougueleret L, et al. New and continuing developments at PROSITE. Nucleic Acids Research. 2012;41(D1):D344–D7. doi: 10.1093/nar/gks1067 %J Nucleic Acids Research. 23161676

82. Sudol M, McDonald CB, Farooq A. Molecular insights into the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1. 2012;586(17):2795–9. doi: 10.1016/j.febslet.2012.03.041 22710169

83. Fehling S, Lennartz F, Strecker T. Multifunctional Nature of the Arenavirus RING Finger Protein Z. Viruses. 2012;4(11):2973–3011. doi: 10.3390/v4112973 23202512

84. Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases. Biological Chemistry2018. p. 127. doi: 10.1515/hsz-2017-0184 29016349

85. Loureiro ME, Wilda M, Levingston Macleod JM, D'Antuono A, Foscaldi S, Marino Buslje C, et al. Molecular determinants of Arenavirus Z protein homo-oligomerization and L polymerase binding. J Virol. 2011:JVI.05691-11. doi: 10.1128/jvi.05691-11 21957305

86. Hastie KM, Zandonatti M, Liu T, Li S, Woods VL, Saphire EO. Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z. J Virol. 2016;90(9):4556–62. doi: 10.1128/JVI.02896-15 PMC4836352. 26912609

87. McDowell GS, Philpott A. Non-canonical ubiquitylation: Mechanisms and consequences. The International Journal of Biochemistry & Cell Biology. 2013;45(8):1833–42.

88. Han Z, Lu J, Liu Y, Davis B, Lee MS, Olson MA, et al. Small Molecule Probes Targeting the Viral PPxY-Host Nedd4 Interface Block Egress of a Broad Range of RNA Viruses. J Virol. 2014. doi: 10.1128/jvi.00591-14 24741084

89. Shields SB, Piper RC. How Ubiquitin Functions with ESCRTs. Traffic. 2011;12(10):1306–17. doi: 10.1111/j.1600-0854.2011.01242.x 21722280

90. Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, et al. Identification, analysis, and prediction of protein ubiquitination sites. 2010;78(2):365–80. doi: 10.1002/prot.22555 19722269

91. Babst M, Wendland B, Estepa EJ, Emr SD. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. 1998;17(11):2982–93. doi: 10.1093/emboj/17.11.2982 %J The EMBO Journal. 9606181

92. Ziegler CM, Eisenhauer P, Bruce EA, Beganovic V, King BR, Weir ME, et al. A novel phosphoserine motif in the LCMV matrix protein Z regulates the release of infectious virus and defective interfering particles. J Gen Virol. 2016. doi: 10.1099/jgv.0.000550 27421645

93. Harty RN, Paragas J, Sudol M, Palese P. A Proline-Rich Motif within the Matrix Protein of Vesicular Stomatitis Virus and Rabies Virus Interacts with WW Domains of Cellular Proteins: Implications for Viral Budding. J Virol. 1999;73(4):2921–9. 10074141

94. Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J. Cellular Factors Required for Lassa Virus Budding. J Virol. 2006;80(8):4191–5. doi: 10.1128/JVI.80.8.4191-4195.2006 16571837

95. Ott DE, Coren LV, Copeland TD, Kane BP, Johnson DG, Sowder RC, et al. Ubiquitin Is Covalently Attached to the p6Gag Proteins of Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus and to the p12Gag Protein of Moloney Murine Leukemia Virus. J Virol. 1998;72(4):2962. 9525617

96. Hicke L, Dunn R. Regulation of Membrane Protein Transport by Ubiquitin and Ubiquitin-Binding Proteins. Annual Review of Cell and Developmental Biology. 2003;19(1):141–72. doi: 10.1146/annurev.cellbio.19.110701.154617 14570567.

97. Ott DE, Coren LV, Chertova EN, Gagliardi TD, Schubert U. Ubiquitination of HIV-1 and MuLV Gag. Virology. 2000;278(1):111–21. doi: 10.1006/viro.2000.0648 11112487

98. Zhadina M, Bieniasz PD. Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding. PLOS Pathogens. 2010;6(10):e1001153. doi: 10.1371/journal.ppat.1001153 20975941

99. Volpon L, Osborne MJ, Borden KLB. NMR assignment of the arenaviral protein Z from Lassa fever virus. Biomolecular Nmr Assignments. 2008;2(1):81–4. doi: 10.1007/s12104-008-9090-z WOS:000258722800022. 18958179

100. May ER, Armen RS, Mannan AM, Brooks CL. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners. Proteins. 2010;78(10):2251–64. doi: 10.1002/prot.22738 ISI:000279387400006. 20544962

101. Capul AA, de la Torre JC, Buchmeier MJ. Conserved Residues in Lassa Fever Virus Z Protein Modulate Viral Infectivity at the Level of the Ribonucleoprotein. J Virol. 2011;85(7):3172. doi: 10.1128/JVI.02081-10 21228230

102. Yasuda J, Hunter E, Nakao M, Shida H. Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep. 2002;3(7):636–40. doi: 10.1093/embo-reports/kvf132 PMC1084186. 12101095

103. Chung H-Y, Morita E, von Schwedler U, Müller B, Kräusslich H-G, Sundquist WI. NEDD4L Overexpression Rescues the Release and Infectivity of Human Immunodeficiency Virus Type 1 Constructs Lacking PTAP and YPXL Late Domains. J Virol. 2008;82(10):4884–97. doi: 10.1128/JVI.02667-07 18321968

104. Usami Y, Popov S, Popova E, Göttlinger HG. Efficient and Specific Rescue of Human Immunodeficiency Virus Type 1 Budding Defects by a Nedd4-Like Ubiquitin Ligase. J Virol. 2008;82(10):4898–907. doi: 10.1128/JVI.02675-07 18321969

105. Calistri A, Del Vecchio C, Salata C, Celestino M, Celegato M, Gottlinger H, et al. Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing: involvement of ubiquitin and Nedd4-2s ligase in viral egress. Journal of cellular physiology. 2009;218(1):175–82. Epub 2008/09/17. doi: 10.1002/jcp.21587 18792916; PubMed Central PMCID: PMC2593634.

106. Rauch S, Martin-Serrano J. Multiple Interactions between the ESCRT Machinery and Arrestin-Related Proteins: Implications for PPXY-Dependent Budding. J Virol. 2011;85(7):3546–56. doi: 10.1128/JVI.02045-10 21191027

107. Popov S, Popova E, Inoue M, Wu Y, Göttlinger H. HIV-1 gag recruits PACSIN2 to promote virus spreading. Proceedings of the National Academy of Sciences. 2018;115(27):7093. doi: 10.1073/pnas.1801849115 29891700

108. Chesarino NM, McMichael TM, Yount JS. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLOS Pathogens. 2015;11(8):e1005095. doi: 10.1371/journal.ppat.1005095 26263374

109. Park A, Yun T, Vigant F, Pernet O, Won ST, Dawes BE, et al. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLOS Pathogens. 2016;12(5):e1005659. doi: 10.1371/journal.ppat.1005659 27203423

110. Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD. Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci USA. 2006;103(12):4663–8. doi: 10.1073/pnas.0600652103 16537369

111. Goñi SE, Iserte JA, Ambrosio AM, Romanowski V, Ghiringhelli PD, Lozano ME. Genomic Features of Attenuated Junín Virus Vaccine Strain Candidate. Virus Genes. 2006;32(1):37–41. doi: 10.1007/s11262-005-5843-2 16525733

112. Chosewood LC, Wilson DE, Centers for Disease Control and Prevention (U.S.), National Institutes of Health (U.S.). Biosafety in microbiological and biomedical laboratories. 5th ed. Washington, D.C.: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health; 2009. xxii, 415 p. p.

113. Cornillez-Ty CT, Liao L, Yates JR, Kuhn P, Buchmeier MJ. Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 2 Interacts with a Host Protein Complex Involved in Mitochondrial Biogenesis and Intracellular Signaling. J Virol. 2009;83(19):10314–8. doi: 10.1128/JVI.00842-09 19640993

114. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating Strategies to Normalise Biological Replicates of Western Blot Data. PLoS ONE. 2014;9(1):e87293. doi: 10.1371/journal.pone.0087293 24475266

115. Welsh RM, Pfau CJ. Determinants of Lymphocytic Choriomeningitis Interference. J Gen Virol. 1972;14(2):177–87. doi: 10.1099/0022-1317-14-2-177 4622135

116. Haist K, Ziegler C, Botten J. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs. PLoS ONE. 2015;10(5):e0120043. doi: 10.1371/journal.pone.0120043 25978311

117. Burns JW, Buchmeier MJ. Protein-protein interactions in lymphocytic choriomeningitis virus. Virology. 1991;183(2):620–9. doi: 10.1016/0042-6822(91)90991-j 1853564

118. Lipman DJ, Karsch-Mizrachi I, Ostell J, Clark K, Sayers EW. GenBank. Nucleic Acids Research. 2015;44(D1):D67–D72. doi: 10.1093/nar/gkv1276 %J Nucleic Acids Research. 26590407

119. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. 2016;54(1):1.30.1–1..3. doi: 10.1002/cpbi.5 27322403

120. R Core Team. R: A language and environment for statistical computing. Vienna, Austria 2018.

121. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens

2019 Číslo 11

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…

Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.


Nemáte účet?  Registrujte sa