#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bile Acid Recognition by the Germinant Receptor, CspC, Is Important for Establishing Infection


Clostridium difficile spores must germinate in vivo to become actively growing bacteria in order to produce the toxins that are necessary for disease. C. difficile spores germinate in vitro in response to certain bile acids and glycine. In other sporulating bacteria, proteins embedded within the inner membrane of the spore sense the presence of germinants and trigger the release of Ca++-dipicolinic acid (Ca++-DPA) from the spore core and subsequent hydrolysis of the spore cortex, a specialized peptidoglycan. Based upon homology searches of known germinant receptors from other spore-forming bacteria, C. difficile likely uses unique mechanisms to recognize germinants. Here, we identify the germination-specific protease, CspC, as the C. difficile bile acid germinant receptor and show that bile acid-mediated germination is important for establishing C. difficile disease in the hamster model of infection. These results highlight the importance of bile acids in triggering in vivo germination and provide the first description of a C. difficile spore germinant receptor. Blocking the interaction of bile acids with the C. difficile spore may represent an attractive target for novel therapeutics.


Vyšlo v časopise: Bile Acid Recognition by the Germinant Receptor, CspC, Is Important for Establishing Infection. PLoS Pathog 9(5): e32767. doi:10.1371/journal.ppat.1003356
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003356

Souhrn

Clostridium difficile spores must germinate in vivo to become actively growing bacteria in order to produce the toxins that are necessary for disease. C. difficile spores germinate in vitro in response to certain bile acids and glycine. In other sporulating bacteria, proteins embedded within the inner membrane of the spore sense the presence of germinants and trigger the release of Ca++-dipicolinic acid (Ca++-DPA) from the spore core and subsequent hydrolysis of the spore cortex, a specialized peptidoglycan. Based upon homology searches of known germinant receptors from other spore-forming bacteria, C. difficile likely uses unique mechanisms to recognize germinants. Here, we identify the germination-specific protease, CspC, as the C. difficile bile acid germinant receptor and show that bile acid-mediated germination is important for establishing C. difficile disease in the hamster model of infection. These results highlight the importance of bile acids in triggering in vivo germination and provide the first description of a C. difficile spore germinant receptor. Blocking the interaction of bile acids with the C. difficile spore may represent an attractive target for novel therapeutics.


Zdroje

1. McDonaldLC, KillgoreGE, ThompsonA, OwensRCJr, KazakovaSV, et al. (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353: 2433–2441.

2. RedelingsMD, SorvilloF, MascolaL (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerging Infections Diseases 13: 1417–1419.

3. WilsonKH, PeriniF (1988) Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 56: 2610–2614.

4. KuehneSA, CartmanST, HeapJT, KellyML, CockayneA, et al. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467: 711–713.

5. LyrasD, O'ConnorJR, HowarthPM, SambolSP, CarterGP, et al. (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458: 1176–9 doi:10.1038/nature07822.

6. LawleyTD, CroucherNJ, YuL, ClareS, SebaihiaM, et al. (2009) Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191: 5377–5386.

7. PruittRN, LacyDB (2012) Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2: 28.

8. CarterGP, RoodJI, LyrasD (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20: 21–29.

9. StragierP, LosickR (1996) Molecular Genetics of Sporulation in Bacillus subtilis. Annu Rev Genet 30: 297–341.

10. SetlowP (2003) Spore germination. Curr Opin Microbiol 6: 550–556.

11. Paredes-SabjaD, UdompijitkulP, SarkerMR (2009) Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates. Appl Environ Microbiol 75: 6299–6305.

12. SebaihiaM, WrenBW, MullanyP, FairweatherNF, MintonN, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38: 779–786.

13. WilsonKH (1983) Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18: 1017–1019.

14. WilsonKH, KennedyMJ, FeketyFR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15: 443–446.

15. RailbaudP, DucluzeauR, MullerMC, SacquetE (1974) [Sodium taurocholate, a germination factor for anaerobic bacterial spores “in vitro” and “in vivo” (author's transl)]. Ann Microbiol (Paris) 125B: 381–391.

16. RidlonJM, KangD, HylemonPB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47: 241–259.

17. SorgJA, SonensheinAL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190: 2505–2512.

18. SorgJA, SonensheinAL (2009) Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191: 1115–1117.

19. SorgJA, SonensheinAL (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192: 4983–4990.

20. MoirA, LaffertyE, SmithDA (1979) Genetic analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J Gen Microbiol 124: 165–180.

21. KamiyaS, YamakawaK, OguraH, NakamuraS (1989) Recovery of spores of Clostridium difficile altered by heat or alkali. J Med Microbiol 28: 217–221.

22. MasayamaA, HamasakiK, UrakamiK, ShimamotoS, KatoS, et al. (2006) Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Genes Genet Syst 81: 227–234.

23. Paredes-SabjaD, SetlowP, SarkerMR (2009) The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155: 3464–3472.

24. ShimamotoS, MoriyamaR, SugimotoK, MiyataS, MakinoS (2001) Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183: 3742–3751.

25. ZhongJ, KarbergM, LambowitzAM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Research 31: 1656–1664.

26. HeapJT, PenningtonOJ, CartmantST, CarterGP, MintonNP (2007) The ClosTron: A universal gene knock-out system for the genus Clostridium. J Microbiol Methods 79: 452–464.

27. BurnsDA, HeapJT, MintonNP (2010) SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192: 657–664.

28. CarterGP, DouceGR, GovindR, HowarthPM, MackinKE, et al. (2011) The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog 7: e1002317.

29. HeegD, BurnsDA, CartmanST, MintonNP (2012) Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS One 7: e32381.

30. GielJL, SorgJA, SonensheinAL, ZhuJ (2010) Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One 5: e8740.

31. ChangTW, BartlettJG, GorbachSL, OnderdonkAB (1978) Clindamycin-induced enterocolitis in hamsters as a model of pseudomembranous colitis in patients. Infect Immun 20: 526–529.

32. HudsonKD, CorfeBM, KempEH, FeaversIM, CootePJ, et al. (2001) Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. Journal of Bacteriology 183: 4317–4322.

33. PaidhungatM, RagkousiK, SetlowP (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183: 4886–4893.

34. AdamsCM, EckenrothBE, PutnamEE, DoublieS, ShenA (2013) Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore Germination. PLoS Pathog 9: e1003165.

35. Paredes-SabjaD, SarkerMR (2011) Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Anaerobe 17: 78–84.

36. HowertonA, PatraM, Abel-SantosE (2013) A new strategy for the prevention of Clostridium difficile infections. J Infect Dis epub ahead of print.

37. RamirezN, LigginsM, Abel-SantosE (2010) Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores. J Bacteriol 192: 4215–4222.

38. HowertonA, RamirezN, Abel-SantosE (2010) Mapping interactions between germinants and C. difficile spores. J Bacteriol 193: 274–282.

39. AllenCA, BabakhaniF, SearsP, NguyenL, SorgJA (2013) Both Fidaxomicin and Vancomycin Inhibit Outgrowth of Clostridium difficile Spores. Antimicrob Agents Chemother 57: 664–667.

40. HanahanD (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580.

41. BouillautL, McBrideSM, SorgJA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol Chapter 9: Unit 9A 2.

42. WrenBW, TabaqchaliS (1987) Restriction endonuclease DNA analysis of Clostridium difficile. J Clin Microbiol 25: 2402–2404.

43. BouillautL, SelfWT, SonensheinAL (2012) Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism. J Bacteriol epub ahead of print.

44. HeapJT, PenningtonOJ, CartmanST, MintonNP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78: 79–85.

45. PermpoonpattanaP, TollsEH, NademR, TanS, BrissonA, et al. (2011) Surface layers of Clostridium difficile endospores. J Bacteriol 193: 6461–6470.

46. Cabrera-MartinezR-M, Tovar-RojoF, VepacheduVR, SetlowP (2003) Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J Bacteriol 185: 2457–2464.

47. SambolSP, TangJK, MerriganMM, JohnsonS, GerdingDN (2001) Infection of hamsters with epidemiologically important strains of Clostridium difficile. J Infect Dis 183: 1760–1766.

48. HaraldsenJD, SonensheinAL (2003) Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Molecular Microbiology 48: 811–821.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#