#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen SCC3193


Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.


Vyšlo v časopise: Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen SCC3193. PLoS Pathog 8(11): e32767. doi:10.1371/journal.ppat.1003013
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003013

Souhrn

Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.


Zdroje

1. HaubenL, MooreER, VauterinL, SteenackersM, MergaertJ, et al. (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21: 384–397.

2. SamsonR, LegendreJB, ChristenR, Fischer-Le SauxM, AchouakW, et al. (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55: 1415–1427 doi:10.1099/ijs.0.02791-0

3. GardanL, GouyC, ChristenR, SamsonR (2003) Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53: 381–391.

4. CzajkowskiR, PérombelonMCM, van VeenJA, van der WolfJM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60: 999–1013 doi:10.1111/j.1365-3059.2011.02470.x

5. PérombelonMCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51: 1–12 doi:10.1046/j.0032-0862.2001.Shorttitle.doc.x

6. TothIK, BirchPRJ (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8: 424–429 doi:10.1016/j.pbi.2005.04.001

7. PirhonenM, FlegoD, HeikinheimoR, PalvaET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12: 2467–2476.

8. ErikssonAR, AnderssonRA, PirhonenM, PalvaET (1998) Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 11: 743–752 doi:10.1094/MPMI.1998.11.8.743

9. HyytiäinenH, MontesanoM, PalvaET (2001) Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 14: 931–938 doi:10.1094/MPMI.2001.14.8.931

10. TothIK, BellKS, HolevaMC, BirchPRJ (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4: 17–30 doi:10.1046/j.1364-3703.2003.00149.x

11. TothIK, PritchardL, BirchPRJ (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 44: 305–336 doi:10.1146/annurev.phyto.44.070505.143444

12. EvansTJ, IndA, KomitopoulouE, SalmondGPC (2010) Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol 109: 505–514 doi:10.1111/j.1365-2672.2010.04669.x

13. BellKS, SebaihiaM, PritchardL, HoldenMTG, HymanLJ, et al. (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101: 11105–11110 doi:10.1073/pnas.0402424101

14. LiuH, CoulthurstSJ, PritchardL, HedleyPE, RavensdaleM, et al. (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4: e1000093 doi:10.1371/journal.ppat.1000093

15. MattinenL, TshuikinaM, MäeA, PirhonenM (2004) Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 17: 1366–1375 doi:10.1094/MPMI.2004.17.12.1366

16. CorbettM, VirtueS, BellK, BirchP, BurrT, et al. (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18: 334–342 doi:10.1094/MPMI-18-0334

17. SjöblomS, HarjunpääH, BraderG, PalvaET (2008) A novel plant ferredoxin-like protein and the regulator Hor are quorum-sensing targets in the plant pathogen Erwinia carotovora. Mol Plant Microbe Interact 21: 967–978 doi:10.1094/MPMI-21-7-0967

18. UrbanyC, NeuhausHE (2008) Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. Mol Plant Microbe Interact 21: 547–554 doi:10.1094/MPMI-21-5-0547

19. Marquez-VillavicencioMDP, WeberB, WitherellRA, WillisDK, CharkowskiAO (2011) The 3-Hydroxy-2-Butanone Pathway Is Required for Pectobacterium carotovorum Pathogenesis. PLoS ONE 6: e22974 doi:10.1371/journal.pone.0022974

20. PoueymiroM, GeninS (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12: 44–52 doi:10.1016/j.mib.2008.11.008

21. CollmerA, SchneiderDJ, LindebergM (2009) Lifestyles of the effector rich: genome-enabled characterization of bacterial plant pathogens. Plant Physiol 150: 1623–1630 doi:10.1104/pp.109.140327

22. GlasnerJD, Marquez-VillavicencioM, KimH-S, JahnCE, MaB, et al. (2008) Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Mol Plant Microbe Interact 21: 1549–1560 doi:10.1094/MPMI-21-12-1549

23. PirhonenM, HeinoP, HelanderI, HarjuP, PalvaET (1988) Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb Pathog 4: 359–367.

24. PirhonenM (1991) Identification of Pathogenicity Determinants of Erwinia carotovora subsp. carotovora by Transposon Mutagenesis. Mol Plant Microbe Interact 4: 276 doi:10.1094/MPMI-4-276

25. SaarilahtiHT, PirhonenM, KarlssonMB, FlegoD, PalvaET (1992) Expression of pehA-bla gene fusions in Erwinia carotovora subsp. carotovora and isolation of regulatory mutants affecting polygalacturonase production. Mol Gen Genet 234: 81–88.

26. MäeA, HeikinheimoR, PalvaET (1995) Structure and regulation of the Erwinia carotovora subspecies carotovora SCC3193 cellulase gene celV1 and the role of cellulase in phytopathogenicity. Mol Gen Genet 247: 17–26.

27. AnderssonRA, PalvaET, PirhonenM (1999) The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s). Mol Plant Microbe Interact 12: 575–584 doi:10.1094/MPMI.1999.12.7.575

28. MaritsR, KõivV, LaasikE, MäeA (1999) Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology (Reading, Engl) 145 (Pt 8) 1959–1966.

29. AnderssonRA, KõivV, Norman-SetterbladC, PirhonenM (1999) Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora. Microbiology (Reading, Engl) 145 (Pt 12) 3547–3556.

30. KõivV, MäeA (2001) Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora. Mol Genet Genomics 265: 287–292.

31. MontesanoM, BraderG, PonceDE, LeónI, PalvaET (2005) Multiple defence signals induced by Erwinia carotovora ssp. carotovora elicitors in potato. Mol Plant Pathol 6: 541–549 doi:10.1111/j.1364-3703.2005.00305.x

32. SjöblomS, BraderG, KochG, PalvaET (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60: 1474–1489 doi:10.1111/j.1365-2958.2006.05210.x

33. AndresenL, KõivV, AlamäeT, MäeA (2007) The Rcs phosphorelay modulates the expression of plant cell wall degrading enzymes and virulence in Pectobacterium carotovorum ssp. carotovorum. FEMS Microbiol Lett 273: 229–238 doi:10.1111/j.1574-6968.2007.00794.x

34. KimH-S, MaB, PernaNT, CharkowskiAO (2009) Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl Environ Microbiol 75: 4539–4549 doi:10.1128/AEM.01336-08

35. GotoM, MatsumotoK (1987) Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from Diseased Rhizomes and Fibrous Roots of Japanese Horseradish (Eutrema wasabi Maxim.). Int J Syst Bacteriol 37: 130–135 doi:10.1099/00207713-37-2-130

36. MaB, HibbingME, KimH-S, ReedyRM, YedidiaI, et al. (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya. Phytopathology 97: 1150–1163 doi:10.1094/PHYTO-97-9-1150

37. PitmanAR, WrightPJ, GalbraithMD, HarrowSA (2008) Biochemical and genetic diversity of pectolytic enterobacteria causing soft rot disease of potatoes in New Zealand. Australasian Plant Pathol 37: 559 doi:10.1071/AP08056

38. KimMH, ChoMS, KimBK, ChoiHJ, HahnJH, et al. (2012) Quantitative Real-Time Polymerase Chain Reaction Assay for Detection of Pectobacterium wasabiae Using YD Repeat Protein Gene-Based Primers. Plant Dis 96: 253–257 doi:10.1094/PDIS-06-11-0511

39. Baghaee-RavariS, RahimianH, Shams-BakhshM, Lopez-SolanillaE, Antúnez-LamasM, et al. (2010) Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur J Plant Pathol 129: 413–425 doi:10.1007/s10658-010-9704-z

40. NabhanS, WydraK, LindeM, DebenerT (2011) The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathology 61: 498–508 Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02546.x/abstract. Accessed 24 February 2012.

41. KoskinenJP, HolmL (2012) SANS: high-throughput retrieval of protein sequences allowing 50% mismatches. Bioinformatics 28: i438–i443 doi:10.1093/bioinformatics/bts417

42. YishayM, BurdmanS, ValverdeA, LuzzattoT, OphirR, et al. (2008) Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environ Microbiol 10: 2746–2759 doi:10.1111/j.1462-2920.2008.01694.x

43. MulhollandV, HintonJC, SidebothamJ, TothIK, HymanLJ, et al. (1993) A pleiotropic reduced virulence (Rvi-) mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens. Mol Microbiol 9: 343–356.

44. HossainMM, ShibataS, AizawaS-I, TsuyumuS (2005) Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66: 134–143 doi:10.1016/j.pmpp.2005.06.001

45. TothIK, ThorpeCJ, BentleySD, MulhollandV, HymanLJ, et al. (1999) Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp. atroseptica. Mol Plant Microbe Interact 12: 499–507 doi:10.1094/MPMI.1999.12.6.499

46. PembertonCL, WhiteheadNA, SebaihiaM, BellKS, HymanLJ, et al. (2005) Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Mol Plant Microbe Interact 18: 343–353 doi:10.1094/MPMI-18-0343

47. AnderssonRA, ErikssonAR, HeikinheimoR, MäeA, PirhonenM, et al. (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol Plant Microbe Interact 13: 384–393 doi:10.1094/MPMI.2000.13.4.384

48. LaasikE, AndresenL, MäeA (2006) Type II quorum sensing regulates virulence in Erwinia carotovora ssp. carotovora. FEMS Microbiol Lett 258: 227–234 doi:10.1111/j.1574-6968.2006.00222.x

49. FlegoD, MaritsR, ErikssonAR, KõivV, KarlssonMB, et al. (2000) A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 13: 447–455 doi:10.1094/MPMI.2000.13.4.447

50. HyytiäinenH, SjöblomS, PalomäkiT, TuikkalaA, Tapio PalvaE (2003) The PmrA-PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol 50: 795–807.

51. ReevesPJ, WhitcombeD, WharamS, GibsonM, AllisonG, et al. (1993) Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora: genes encoding members of a general secretion pathway (GSP) widespread in gram-negative bacteria. Mol Microbiol 8: 443–456.

52. RecordsAR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24: 751–757 doi:10.1094/MPMI-11-10-0262

53. SchwarzS, WestTE, BoyerF, ChiangW-C, CarlMA, et al. (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6: e1001068 doi:10.1371/journal.ppat.1001068

54. ZhengJ, HoB, MekalanosJJ (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6: e23876 doi:10.1371/journal.pone.0023876

55. AlfanoJR, CollmerA (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42: 385–414 doi:10.1146/annurev.phyto.42.040103.110731

56. PitmanAR, HarrowSA, VisnovskySB (2009) Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur J Plant Pathol 126: 423–435 doi:10.1007/s10658-009-9551-y

57. KimH-S, ThammaratP, LommelSA, HoganCS, CharkowskiAO (2011) Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol Plant Microbe Interact 24: 773–786 doi:10.1094/MPMI-06-10-0143

58. HolevaMC, BellKS, HymanLJ, AvrovaAO, WhissonSC, et al. (2004) Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins. Mol Plant Microbe Interact 17: 943–950 doi:10.1094/MPMI.2004.17.9.943

59. YangC-H, Gavilanes-RuizM, OkinakaY, VedelR, BerthuyI, et al. (2002) hrp genes of Erwinia chrysanthemi 3937 are important virulence factors. Mol Plant Microbe Interact 15: 472–480 doi:10.1094/MPMI.2002.15.5.472

60. CunnacS, LindebergM, CollmerA (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12: 53–60 doi:10.1016/j.mib.2008.12.003

61. HackerJ, CarnielE (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2: 376–381 doi:10.1093/embo-reports/kve097

62. DobrindtU, HochhutB, HentschelU, HackerJ (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424 doi:10.1038/nrmicro884

63. WaackS, KellerO, AsperR, BrodagT, DammC, et al. (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7: 142 doi:10.1186/1471-2105-7-142

64. HsiaoW, WanI, JonesSJ, BrinkmanFSL (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19: 418–420.

65. LangilleMGI, HsiaoWWL, BrinkmanFSL (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9: 329 doi:10.1186/1471-2105-9-329

66. LawrenceJG, OchmanH (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95: 9413–9417.

67. KooninEV, MakarovaKS, AravindL (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55: 709–742 doi:10.1146/annurev.micro.55.1.709

68. Vincent-SealyLV, ThomasJD, CommanderP, SalmondGP (1999) Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins. Microbiology (Reading, Engl) 145 (Pt 8) 1945–1958.

69. CoulthurstSJ, LilleyKS, HedleyPE, LiuH, TothIK, et al. (2008) DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J Biol Chem 283: 23739–23753 doi:10.1074/jbc.M801829200

70. EffmertU, SaschenbreckerS, RossJ, NegreF, FraserCM, et al. (2005) Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry 66: 1211–1230 doi:10.1016/j.phytochem.2005.03.031

71. ParkS-W, KaimoyoE, KumarD, MosherS, KlessigDF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113–116 doi:10.1126/science.1147113

72. KooYJ, KimMA, KimEH, SongJT, JungC, et al. (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64: 1–15 doi:10.1007/s11103-006-9123-x

73. LiuP-P, YangY, PicherskyE, KlessigDF (2010) Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis. Mol Plant Microbe Interact 23: 82–90 doi:10.1094/MPMI-23-1-0082

74. YeatesTO, KerfeldCA, HeinhorstS, CannonGC, ShivelyJM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6: 681–691 doi:10.1038/nrmicro1913

75. KerfeldCA, HeinhorstS, CannonGC (2010) Bacterial microcompartments. Annu Rev Microbiol 64: 391–408 doi:10.1146/annurev.micro.112408.134211

76. YeatesTO, CrowleyCS, TanakaS (2010) Bacterial microcompartment organelles: protein shell structure and evolution. Annu Rev Biophys 39: 185–205 doi:10.1146/annurev.biophys.093008.131418

77. GarsinDA (2010) Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8: 290–295 doi:10.1038/nrmicro2334

78. AnforaAT, HalladinDK, HaugenBJ, WelchRA (2008) Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect Immun 76: 5760–5767 doi:10.1128/IAI.00618-08

79. BryantWA, KrabbenP, BaganzF, ZhouY, WardJM (2009) The Analysis of Multiple Genome Comparisons in Genus Escherichia and Its Application to the Discovery of Uncharacterised Metabolic Genes in Uropathogenic Escherichia coli CFT073. Comp Funct Genomics 782924 doi:10.1155/2009/782924

80. MosbergJA, YepA, MeredithTC, SmithS, WangP-F, et al. (2011) A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073. J Bacteriol 193: 2981–2988 doi:10.1128/JB.00033-11

81. ReslewicS, ZhouS, PlaceM, ZhangY, BriskaA, et al. (2005) Whole-genome shotgun optical mapping of Rhodospirillum rubrum. Appl Environ Microbiol 71: 5511–5522 doi:10.1128/AEM.71.9.5511-5522.2005

82. MujahidM, SasikalaC, RamanaCV (2010) Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 61: 285–290 doi:10.1007/s00284-010-9609-2

83. LarimerFW, ChainP, HauserL, LamerdinJ, MalfattiS, et al. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61 doi:10.1038/nbt923

84. ImamS, YilmazS, SohmenU, GorzalskiAS, ReedJL, et al. (2011) iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Syst Biol 5: 116 doi:10.1186/1752-0509-5-116

85. MilneCB, EddyJA, RajuR, ArdekaniS, KimP-J, et al. (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5: 130 doi:10.1186/1752-0509-5-130

86. RodriguesJLM, SerresMH, TiedjeJM (2011) Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of shewanella species and identify metabolic pathways conserved at the genus level. Appl Environ Microbiol 77: 5352–5360 doi:10.1128/AEM.00097-11

87. NewmanM-A, DowJM, MolinaroA, ParrilliM (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13: 69–84 doi:10.1177/0968051907079399

88. StolzJF, BasuP, SantiniJM, OremlandRS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60: 107–130 doi:10.1146/annurev.micro.60.080805.142053

89. JacksonCR, DugasSL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3: 18 doi:10.1186/1471-2148-3-18

90. Mäkelä-Kurtto R, Eurola M, Justen A, Backman B, Luoma S, et al..(Geological Survey of Finland) (2006) Arsenic and other elements in agro-ecosystems in Finland and particularly in the Pirkanmaa region. Final report 2006. Espoo, Finland: Geological Survey of Finland. 121 p. Available from: http://en.gtk.fi/Geoinfo/Publications/Publicationsales.html

91. WangYD, ZhaoS, HillCW (1998) Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 180: 4102–4110.

92. JacksonAP, ThomasGH, ParkhillJ, ThomsonNR (2009) Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics 10: 584 doi:10.1186/1471-2164-10-584

93. PukatzkiS, MaAT, SturtevantD, KrastinsB, SarracinoD, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528–1533 doi:10.1073/pnas.0510322103

94. MougousJD, CuffME, RaunserS, ShenA, ZhouM, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–1530 doi:10.1126/science.1128393

95. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 doi:10.1093/bioinformatics/btm404

96. GoujonM, McWilliamH, LiW, ValentinF, SquizzatoS, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38: W695–699 doi:10.1093/nar/gkq313

97. GibbsKA, UrbanowskiML, GreenbergEP (2008) Genetic determinants of self identity and social recognition in bacteria. Science 321: 256–259 doi:10.1126/science.1160033

98. YouderianP, HartzellPL (2007) Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics 177: 557–566 doi:10.1534/genetics.107.076182

99. PooleSJ, DinerEJ, AokiSK, BraatenBA, t' Kint de RoodenbekeC, et al. (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 7: e1002217 doi:10.1371/journal.pgen.1002217

100. MattinenL, SomervuoP, NykyriJ, NissinenR, KouvonenP, et al. (2008) Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology (Reading, Engl) 154: 2387–2396 doi:10.1099/mic.0.2008/017582-0

101. MattickJS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56: 289–314 doi:10.1146/annurev.micro.56.012302.160938

102. CraigL, PiqueME, TainerJA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363–378 doi:10.1038/nrmicro885

103. IshimaruCA, LoperJE (1992) High-affinity iron uptake systems present in Erwinia carotovora subsp. carotovora include the hydroxamate siderophore aerobactin. J Bacteriol 174: 2993–3003.

104. RatledgeC, DoverLG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881–941 doi:10.1146/annurev.micro.54.1.881

105. BoughammouraA, FranzaT, DellagiA, RouxC, Matzanke-MarksteinB, et al. (2007) Ferritins, bacterial virulence and plant defence. Biometals 20: 347–353 doi:10.1007/s10534-006-9069-0

106. ShaoN, HuangH, MengK, LuoH, WangY, et al. (2008) Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. J Microbiol Biotechnol 18: 1221–1226.

107. JohnstonC, PeguesDA, HueckCJ, LeeA, MillerSI (1996) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol 22: 715–727.

108. RakemanJL, BonifieldHR, MillerSI (1999) A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J Bacteriol 181: 3096–3104.

109. StrohmaierH, RemlerP, RennerW, HögenauerG (1995) Expression of genes kdsA and kdsB involved in 3-deoxy-D-manno-octulosonic acid metabolism and biosynthesis of enterobacterial lipopolysaccharide is growth phase regulated primarily at the transcriptional level in Escherichia coli K-12. J Bacteriol 177: 4488–4500.

110. NakahigashiK, KuboN, NaritaS, ShimaokaT, GotoS, et al. (2002) HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc Natl Acad Sci U S A 99: 1473–1478 doi:10.1073/pnas.032488499

111. RydenM, MurphyJ, MartinR, IsakssonL, GallantJ (1986) Mapping and complementation studies of the gene for release factor 1. J Bacteriol 168: 1066–1069.

112. KroghA, LarssonB, von HeijneG, SonnhammerEL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580 doi:10.1006/jmbi.2000.431510.1006/jmbi.2000.4315.

113. SmitsTHM, RezzonicoF, KamberT, BlomJ, GoesmannA, et al. (2010) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23: 384–393 doi:10.1094/MPMI-23-4-0384

114. Petnicki-OcwiejaT, SchneiderDJ, TamVC, ChanceyST, ShanL, et al. (2002) Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 99: 7652–7657 doi:10.1073/pnas.112183899

115. TaghaviS, van der LelieD, HoffmanA, ZhangY-B, WallaMD, et al. (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6: e1000943 doi:10.1371/journal.pgen.1000943

116. Goodrich-BlairH, ClarkeDJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64: 260–268 doi:10.1111/j.1365-2958.2007.05671.x

117. TockMR, DrydenDTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8: 466–472 doi:10.1016/j.mib.2005.06.003

118. KobayashiI (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29: 3742–3756.

119. NobusatoA, UchiyamaI, KobayashiI (2000) Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 259: 89–98.

120. PouillotF, FayolleC, CarnielE (2007) A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity. Microbiology (Reading, Engl) 153: 2426–2434 doi:10.1099/mic.0.2007/005736-0

121. BladergroenMR, BadeltK, SpainkHP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16: 53–64 doi:10.1094/MPMI.2003.16.1.53

122. WuX, MonchyS, TaghaviS, ZhuW, RamosJ, et al. (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35: 299–323 doi:10.1111/j.1574-6976.2010.00249.x

123. RosenbluethM, Martínez-RomeroE (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19: 827–837 doi:10.1094/MPMI-19-0827

124. RyanRP, GermaineK, FranksA, RyanDJ, DowlingDN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278: 1–9 doi:10.1111/j.1574-6968.2007.00918.x

125. TylerHL, TriplettEW (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 46: 53–73 doi:10.1146/annurev.phyto.011708.103102

126. HyattD, ChenG-L, LocascioPF, LandML, LarimerFW, et al. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119 doi:10.1186/1471-2105-11-119

127. PatiA, IvanovaNN, MikhailovaN, OvchinnikovaG, HooperSD, et al. (2010) GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 7: 455–457 doi:10.1038/nmeth.1457

128. TatusovRL, GalperinMY, NataleDA, KooninEV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33–36.

129. ZdobnovEM, ApweilerR (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848.

130. WestoverBP, BuhlerJD, SonnenburgJL, GordonJI (2005) Operon prediction without a training set. Bioinformatics 21: 880–888 doi:10.1093/bioinformatics/bti123

131. Gama-CastroS, Jiménez-JacintoV, Peralta-GilM, Santos-ZavaletaA, Peñaloza-SpinolaMI, et al. (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36: D120–124 doi:10.1093/nar/gkm994

132. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 doi:10.1093/nar/gkh340

133. StamatakisA, LudwigT, MeierH (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463 doi:10.1093/bioinformatics/bti191

134. FelsensteinJ (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166 doi:10.1111/j.1096-0031.1989.tb00562.x

135. LetunicI, BorkP (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128 doi:10.1093/bioinformatics/btl529

136. Schaad NW, Jones JB, Chun W (2001) Laboratory Guide for Identification of Plant Pathogenic Bacteria. St Paul, USA: American Phytopathological Society Press. 373 p.

137. Hyman LJ, Toth IK, Pérombelon MCM (2002) Isolation and identification. In: Pérombelon MCM, van der Wolf JM, editors. Methods for the detection and quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on potatoes: a laboratory manual. Scotland, UK: Scottish Crop Research Institute. pp. 66–77.

138. ToronenP (2004) Selection of informative clusters from hierarchical cluster tree with gene classes. BMC Bioinformatics 5: 32 doi:10.1186/1471-2105-5-32

139. DarlingAE, MauB, PernaNT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5: e11147 doi:10.1371/journal.pone.0011147

140. LiL, StoeckertCJJr, RoosDS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189 doi:10.1101/gr.1224503

141. EngelsR, YuT, BurgeC, MesirovJP, DeCaprioD, et al. (2006) Combo: a whole genome comparative browser. Bioinformatics 22: 1782–1783 doi:10.1093/bioinformatics/btl193

142. AltschulSF, MaddenTL, SchäfferAA, ZhangJ, ZhangZ, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

143. AltschulSF, WoottonJC, GertzEM, AgarwalaR, MorgulisA, et al. (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272: 5101–5109 doi:10.1111/j.1742-4658.2005.04945.x

144. HaiderS, BallesterB, SmedleyD, ZhangJ, RiceP, et al. (2009) BioMart Central Portal–unified access to biological data. Nucleic Acids Res 37: W23–27 doi:10.1093/nar/gkp265

145. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645 doi:10.1073/pnas.120163297

146. HoangTT, Karkhoff-SchweizerRR, KutchmaAJ, SchweizerHP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86.

147. HuynhTV, DahlbeckD, StaskawiczBJ (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374–1377.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#