#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structural and Functional Analysis of Laninamivir and its Octanoate Prodrug Reveals Group Specific Mechanisms for Influenza NA Inhibition


The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.


Vyšlo v časopise: Structural and Functional Analysis of Laninamivir and its Octanoate Prodrug Reveals Group Specific Mechanisms for Influenza NA Inhibition. PLoS Pathog 7(10): e32767. doi:10.1371/journal.ppat.1002249
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002249

Souhrn

The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.


Zdroje

1. DawoodFSJainSFinelliLShawMWLindstromS 2009 Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360 2605 2615

2. WangTTPaleseP 2009 Unraveling the mystery of swine influenza virus. Cell 137 983 985

3. GaoGFSunY 2010 It is not just AIV: From avian to swine-origin influenza virus. Sci China-Life Sci 53 151 153

4. BarrIGCuiLKomadinaNLeeRTLinRT 2010 A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza season in Australia, New Zealand and Singapore. Euro Surveill 15 19692

5. von ItzsteinMWuWYKokGBPeggMSDyasonJC 1993 Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363 418 423

6. von ItzsteinMWuWYJinB 1994 The synthesis of 2,3-didehydro-2,4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor. Carbohydr Res 259 301 305

7. KimCULewWWilliamsMALiuHZhangL 1997 Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119 681 690

8. von ItzsteinM 2007 The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6 967 974

9. GamblinSJSkehelJJ 2010 Influenza haemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285 28403 28409

10. PielakRMChouJJ 2010 Flu channel drug resistance: a tale of two sites. Protein Cell 1 246 258

11. ColmanPM 1994 Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3 1687 1696

12. RussellRJHaireLFStevensDJCollinsPJLinYP 2006 The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443 45 49

13. LiQQiJZhangWVavrickaCJShiY 2010 The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17 1266 1268

14. AmaroREMinhDDChengLSLindstromWMJrOlsonAJ 2007 Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129 7764 7765

15. WangMQiJLiuYVavrickaCJWuY 2011 Influenza A virus neuraminidase N5 has an extended 150-cavity. J Virol 85 8431 8435

16. AmaroREChengXIvanovIXuDMcCammonJA 2009 Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. J Am Chem Soc 131 4702 4709

17. VavrickaCJLiuYLiQShiYWuY 2011 Special features of the 2009 pandemic swine-origin influenza A H1N1 hemagglutinin and neuraminidase. Chinese Sci Bull 56 1747 1752

18. RudrawarSDyasonJCRameix-WeltiMARoseFJKerryPS 2010 Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Commun 1 113

19. MohanSMcAtamneySHaselhorstTvon ItzsteinMPintoBM 2010 Carbocycles related to oseltamivir as influenza virus group-1-specific neuraminidase inhibitors. Binding to N1 enzymes in the context of virus-like particles. J Med Chem 53 7377 7391

20. DurrantJDMcCammonJA 2010 Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design. Comput Biol Chem 34 97 105

21. ColmanPMVargheseJNLaverWG 1983 Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303 41 44

22. VargheseJNLaverWGColmanPM 1983 Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303 35 40

23. BakerATVargheseJNLaverWGAirGMColmanPM 1987 Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins 2 111 117

24. BurmeisterWPRuigrokRWCusackS 1992 The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J 11 49 56

25. AlbohyAMohanSZhengRBPintoBMCairoCW 2011 Inhibitor selectivity of a new class of oseltamivir analogs against viral neuraminidase over human neuraminidase enzymes. Bioorg Med Chem 19 2817 2822

26. LandonMRAmaroREBaronRNganCHOzonoffD 2008 Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71 106 116

27. KirchmairJRollingerJMLiedlKRSeidelNKrumbholzA 2011 Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode. Future Med Chem 3 437 450

28. GrienkeUSchmidtkeMKirchmairJPfarrKWutzlerP 2010 Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J Med Chem 53 778 786

29. VargheseJNSmithPWSollisSLBlickTJSahasrabudheA 1998 Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 6 735 746

30. CollinsPJHaireLFLinYPLiuJRussellRJ 2008 Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453 1258 1261

31. TamuraDSugayaNOzawaMTakanoRIchikawaM 2011 Frequency of drug-resistant viruses and virus shedding in pediatric influenza patients treated with neuraminidase inhibitors. Clin Infect Dis 52 432 437

32. KisoMKuboSOzawaMLeQMNidomCA 2010 Efficacy of the new neuraminidase inhibitor CS-8958 against H5N1 influenza viruses. PLoS Pathog 6 e1000786

33. KuboSTomozawaTKakutaMTokumitsuAYamashitaM 2010 Laninamivir prodrug CS-8958, a long-acting neuraminidase inhibitor, shows superior anti-influenza virus activity after a single administration. Antimicrob Agents Chemother 54 1256 1264

34. YamashitaMTomozawaTKakutaMTokumitsuANasuH 2009 CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob Agents Chemother 53 186 192

35. SugayaNOhashiY 2010 Long-acting neuraminidase inhibitor laninamivir octanoate (CS-8958) versus oseltamivir as treatment for children with influenza virus infection. Antimicrob Agents Chemother 54 2575 2582

36. WatanabeAChangSCKimMJChuDWOhashiY 2011 Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: A double-blind, randomized, noninferiority clinical trial. Clin Infect Dis 51 1167 1175

37. IshizukaHYoshibaSOkabeHYoshiharaK 2010 Clinical pharmacokinetics of laninamivir, a novel long-acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS-8958, in healthy male volunteers. J Clin Pharmacol 50 1319 1329

38. KoyamaKTakahashiMNakaiNTakakusaHMuraiT 2010 Pharmacokinetics and disposition of CS-8958, a long-acting prodrug of the novel neuraminidase inhibitor laninamivir in rats. Xenobiotica 40 207 216

39. XuXZhuXDwekRAStevensJWilsonIA 2008 Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82 10493 10501

40. ZhangWQiJianxunShiYiLiQingGaoFeng 2010 Crystal structure of the swine-origin A (H1N1) - 2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. Protein Cell 1 459 467

41. JedrzejasMJSinghSBrouilletteWJLaverWGAirGM 1995 Structures of aromatic inhibitors of influenza virus neuraminidase. Biochemistry 34 3144 3151

42. VargheseJNMckimmbreschkinJLCaldwellJBKorttAAColmanPM 1992 The structure of the complex between influenza-virus neuraminidase and sialic-ccid, the viral receptor. Proteins 14 327 332

43. VenkatramaniLBochkarevaELeeJTGulatiUGraeme LaverW 2006 An epidemiologically significant epitope of a 1998 human influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. J Mol Biol 356 651 663

44. SmithPWSollisSLHowesPDCherryPCCobleyKN 1996 Novel inhibitors of influenza sialidases related to GG167 - Structure-activity, crystallographic and molecular dynamic studies with 4H-pyran-2-carboxylic acid 6-carboxamides. Bioorgan Med Chem Lett 6 2931 2936

45. TaylorNRCleasbyASinghOSkarzynskiTWonacottAJ 1998 Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. J Med Chem 41 798 807

46. van der VriesEStelmaFFBoucherCA 2010 Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med 363 1381 1382

47. WangPZhangJZ 2010 Selective binding of antiinfluenza drugs and their analogues to 'open' and 'closed' conformations of H5N1 neuraminidase. J Phys Chem B 114 12958 12964

48. WangMZTaiCYMendelDB 2002 Mechanism by which mutations at his274 alter sensitivity of influenza a virus n1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob Agents Chemother 46 3809 3816

49. HondaTMasudaTYoshidaSAraiMKobayashiY 2002 Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives. Bioorg Med Chem Lett 12 1921 1924

50. HondaTMasudaTYoshidaSAraiMKanekoS 2002 Synthesis and anti-influenza virus activity of 7-O-alkylated derivatives related to zanamivir. Bioorg Med Chem Lett 12 1925 1928

51. ChandlerMBamfordMJConroyRLamontBPatelB 1995 Synthesis of the potent influenza neuraminidase inhibitor 4-guanidino neu5ac2en - X-Ray molecular-structure of 5-acetamido-4-amino-2,6-anhydro-3,4,5-trideoxy-D-erythro-L-gluco-nononic acid. J Chem Soc Perkin Trans 1 1173 1180

52. LiJZhengMTangWHePLZhuW 2006 Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg Med Chem Lett 16 5009 5013

53. MaganoJ 2009 Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. Chem Rev 109 4398 4438

54. PotierMMameliLBelisleMDallaireLMelanconSB 1979 Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem 94 287 296

55. OtwinowskiZMinorW 1997 Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276 307 326

56. ReadRJ 2001 Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 57 1373 1382

57. 1994 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50 760 763

58. MurshudovGNVaginAADodsonEJ 1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 240 255

59. EmsleyPCowtanK 2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132

60. AdamsPDAfoninePVBunkocziGChenVBDavisIW 2010 PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66 213 221

61. LaskowskiRAMacarthurMWMossDSThorntonJM 1993 Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26 283 291

62. RamachandranGNRamakrishnanCSasisekharanV 1963 Stereochemistry of polypeptide chain configurations. J Mol Biol 7 95 99

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#