A Small-Molecule Inhibitor of Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity


Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.


Vyšlo v časopise: A Small-Molecule Inhibitor of Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000720
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000720

Souhrn

Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.


Zdroje

1. CarruthersV

BoothroydJC

2007 Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 10 83 89

2. HuK

RoosDS

MurrayJM

2002 A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 156 1039 1050

3. MitalJ

MeissnerM

SoldatiD

WardGE

2005 Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16 4341 4349

4. CarruthersVB

TomleyFM

2008 Microneme Proteins in Apicomplexans. Subcell Biochem 47 33 45

5. AlexanderDL

MitalJ

WardGE

BradleyP

BoothroydJC

2005 Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1 e17 doi:10.1371/journal.ppat.0010017

6. LebrunM

MichelinA

El HajjH

PoncetJ

BradleyPJ

2005 The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 7 1823 1833

7. Suss-TobyE

ZimmerbergJ

WardGE

1996 Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci U S A 93 8413 8418

8. MeissnerM

SchluterD

SoldatiD

2002 Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298 837 840

9. HeintzelmanMB

SchwartzmanJD

1997 A novel class of unconventional myosins from Toxoplasma gondii. J Mol Biol 271 139 146

10. Herm-GotzA

WeissS

StratmannR

Fujita-BeckerS

RuffC

2002 Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 21 2149 2158

11. TyskaMJ

WarshawDM

2002 The myosin power stroke. Cell Motil Cytoskeleton 51 1 15

12. KeeleyA

SoldatiD

2004 The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 14 528 532

13. BaumJ

RichardD

HealerJ

RugM

KrnajskiZ

2006 A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 281 5197 5208

14. GaskinsE

GilkS

DeVoreN

MannT

WardG

2004 Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165 383 393

15. GilkSD

GaskinsE

WardGE

BeckersCJ

2008 GAP45 Phosphorylation controls assembly of the Toxoplasma myosin XIV complex. Eukaryot Cell 8 190 196

16. JohnsonTM

RajfurZ

JacobsonK

BeckersCJ

2007 Immobilization of the type XIV myosin complex in Toxoplasma gondii. Mol Biol Cell 18 3039 3046

17. JewettTJ

SibleyLD

2003 Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11 885 894

18. MatuschewskiK

SchülerH

2008 Actin/Myosin-Based Gliding Motility in Apicomplexan Parasites. Subcell Biochem 47 110 120

19. SibleyLD

2004 Intracellular parasite invasion strategies. Science 304 248 253

20. HakanssonS

MorisakiH

HeuserJ

SibleyLD

1999 Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10 3539 3547

21. RedowiczMJ

2001 Regulation of nonmuscle myosins by heavy chain phosphorylation. J Muscle Res Cell Motil 22 163 173

22. BrzeskaH

KornED

1996 Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 271 16983 16986

23. TrybusKM

1994 Role of myosin light chains. J Muscle Res Cell Motil 15 587 594

24. KammKE

StullJT

2001 Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276 4527 4530

25. GreenJL

Rees-ChannerRR

HowellSA

MartinSR

KnuepferE

2008 The motor complex of Plasmodium falciparum: phosphorylation by a calcium-dependent protein kinase. J Biol Chem 283 30980 30989

26. CareyKL

WestwoodNJ

MitchisonTJ

WardGE

2004 A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci U S A 101 7433 7438

27. MitalJ

WardGE

2008 Current and emerging approaches to studying invasion in apicomplexan parasites. Subcell Biochem 47 1 32

28. OngSE

MannM

2006 A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1 2650 2660

29. HaasW

FahertyBK

GerberSA

EliasJE

BeausoleilSA

2006 Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol Cell Proteomics 5 1326 1337

30. WalshCT

Garneau-TsodikovaS

GattoGJJr

2005 Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44 7342 7372

31. WorkSS

WarshawDM

1992 Computer-assisted tracking of actin filament motility. Anal Biochem 202 275 285

32. GreenJL

MartinSR

FieldenJ

KsagoniA

GraingerM

2006 The MTIP-myosin A complex in blood stage malaria parasites. J Mol Biol 355 933 941

33. HarrisDE

WarshawDM

1993 Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem 268 14764 14768

34. De La CruzEM

OstapEM

2004 Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16 61 67

35. WalcottS

FagnantPM

TrybusKM

WarshawDM

2009 Smooth muscle heavy meromyosin phosphorylated on one of its two heads supports force and motion. J Biol Chem 284 18244 18251

36. BoschJ

TurleyS

RoachCM

DalyTM

BergmanLW

2007 The closed MTIP-myosin A-tail complex from the malaria parasite invasion machinery. J Mol Biol 372 77 88

37. AndreevOA

SaraswatLD

LoweyS

SlaughterC

BorejdoJ

1999 Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin. Biochemistry 38 2480 2485

38. HeintzelmanMB

2006 Cellular and molecular mechanics of gliding locomotion in eukaryotes. Int Rev Cytol 251 79 129

39. DobrowolskiJM

CarruthersVB

SibleyLD

1997 Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26 163 173

40. RoosDS

DonaldRG

MorrissetteNS

MoultonAL

1994 Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45 27 63

41. CareyKL

DonahueCG

WardGE

2000 Identification and molecular characterization of GRA8, a novel, proline-rich, dense granule protein of Toxoplasma gondii. Mol Biochem Parasitol 105 25 37

42. WichroskiMJ

MeltonJA

DonahueCG

TwetenRK

WardGE

2002 Clostridium septicum alpha-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidylinositol-anchored surface proteins. Infect Immun 70 4353 4361

43. CareyKL

JongcoAM

KimK

WardGE

2004 The Toxoplasma gondii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells. Eukaryot Cell 3 1320 1330

44. HuK

MannT

StriepenB

BeckersCJ

RoosDS

2002 Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 13 593 606

45. UyedaTQ

KronSJ

SpudichJA

1990 Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214 699 710

46. BallifBA

CaoZ

SchwartzD

CarrawayKL

GygiSP

2006 Identification of 14-3-3epsilon substrates from embryonic murine brain. J Proteome Res 5 2372 2379

47. BallifBA

CareyGR

SunyaevSR

GygiSP

2008 Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7 311 318

48. BallifBA

RouxPP

GerberSA

MacKeiganJP

BlenisJ

2005 Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci U S A 102 667 672

49. PfefferkornER

1990 Cell biology of Toxoplasma gondii.

WylerDJ

Modern Parasite Biology Cellular, Immunological, and Molecular Aspects, W. H. Freeman and Company

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa