#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MicroRNA-203 Is a Prognostic Indicator in Bladder Cancer and Enhances Chemosensitivity to Cisplatin via Apoptosis by Targeting Bcl-w and Survivin


Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in advanced bladder cancer (BC) patients. There is increasing evidence that microRNAs are involved in the development and progression of BC. However, little is known about the function of microRNAs in predicting the effect of adjuvant chemotherapy on BC survival and regulating response to cisplatin. To address this issue, we employed RT-qPCR to evaluate the clinical significance of miR-203 expression in 108 tissues of BC patients receiving cisplatin-based adjuvant chemotherapy, and performed in vitro studies to explore chemotherapeutic sensitivity to cisplatin in miR-203 overexpressing BC cells. We found miR-203 levels were significantly lower in BC progression group than non-progression group (P<0.001). ROC curve analysis illustrated miR-203 could significantly distinguish progressed patients from those without progression (P<0.001), yielding an area under the ROC curve of 0.839 (95% CI, 0.756–0.903). Moreover, low miR-203 expression correlated with shortened progression free survival (PFS) and overall survival (OS) of BC patients, and was an independent prognostic factor. Overexpression of miR-203 in 5637 and T24 BC cells could decrease cell viability, enhance cisplatin cytotoxicity, and promote apoptosis. Western blotting and luciferase reporter assay showed Bcl-w and Survivin were direct downstream targets of miR-203. There was also a significant inverse association between miR-203 and Bcl-w or Survivin expression in BC tissues (r = -0.781, -0.740, both P<0.001). In conclusion, decreased miR-203 predicts progression and poor prognosis for BC patients treated with cisplatin-based chemotherapy while miR-203 overexpression can enhance cisplatin sensitization by promoting apoptosis via directly targeting Bcl-w and Survivin.


Autoři: Xin Zhang 1;  Yanli Zhang 2;  Xinfeng Liu 2;  Aiju Fang 3;  Peilong Li 1;  Zewu Li 1;  Tong Liu 1;  Yongmei Yang 1;  Lutao Du 1;  Chuanxin Wang 1*
Působiště autorů: Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China 1;  Department of Clinical Laboratory, Traffic Hospital of Shandong Province, Jinan, China 2;  Department of Pathology, Traffic Hospital of Shandong Province, Jinan, China 3
Vyšlo v časopise: PLoS ONE 10(11)
Kategorie: Research article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0143441

© 2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The electronic version of this article is the complete one and can be found online at: http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0143441

Souhrn

Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in advanced bladder cancer (BC) patients. There is increasing evidence that microRNAs are involved in the development and progression of BC. However, little is known about the function of microRNAs in predicting the effect of adjuvant chemotherapy on BC survival and regulating response to cisplatin. To address this issue, we employed RT-qPCR to evaluate the clinical significance of miR-203 expression in 108 tissues of BC patients receiving cisplatin-based adjuvant chemotherapy, and performed in vitro studies to explore chemotherapeutic sensitivity to cisplatin in miR-203 overexpressing BC cells. We found miR-203 levels were significantly lower in BC progression group than non-progression group (P<0.001). ROC curve analysis illustrated miR-203 could significantly distinguish progressed patients from those without progression (P<0.001), yielding an area under the ROC curve of 0.839 (95% CI, 0.756–0.903). Moreover, low miR-203 expression correlated with shortened progression free survival (PFS) and overall survival (OS) of BC patients, and was an independent prognostic factor. Overexpression of miR-203 in 5637 and T24 BC cells could decrease cell viability, enhance cisplatin cytotoxicity, and promote apoptosis. Western blotting and luciferase reporter assay showed Bcl-w and Survivin were direct downstream targets of miR-203. There was also a significant inverse association between miR-203 and Bcl-w or Survivin expression in BC tissues (r = -0.781, -0.740, both P<0.001). In conclusion, decreased miR-203 predicts progression and poor prognosis for BC patients treated with cisplatin-based chemotherapy while miR-203 overexpression can enhance cisplatin sensitization by promoting apoptosis via directly targeting Bcl-w and Survivin.


Zdroje

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011; 61(2):69–90.

2. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. Journal of clinical oncology. 2001; 19(3):666–75. PMID: 11157016

3. Herr HW, Dotan Z, Donat SM, Bajorin DF. Defining optimal therapy for muscle invasive bladder cancer. The Journal of urology. 2007; 177(2):437–43. PMID: 17222605

4. Phatak P, Byrnes KA, Mansour D, Liu L, Cao S, Li R, et al. Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 2015. [Epub ahead of print]

5. Li N, Yang L, Wang H, Yi T, Jia X, Chen C, et al. MiR-130a and MiR-374a Function as Novel Regulators of Cisplatin Resistance in Human Ovarian Cancer A2780 Cells. PloS one. 2015; 10(6):e0128886. doi: 10.1371/journal.pone.0128886 PMID: 26043084

6. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409(6818):363–6. PMID: 11201747

7. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215–33. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326

8. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009; 136(4):586–91. doi: 10.1016/j.cell.2009.02.005 PMID: 19239879

9. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. The lancet oncology. 2012; 13(6):e249–58. doi: 10.1016/S1470-2045(12)70073-6 PMID: 22652233

10. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clinical chemistry. 2009; 55(4):623–31. doi: 10.1373/clinchem.2008.112805 PMID: 19246618

11. Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng G, et al. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer prevention research. 2011; 4(10):1698–709. doi: 10.1158/1940-6207.CAPR-11-0267 PMID: 21836020

12. Yin J, Zheng G, Jia X, Zhang Z, Zhang W, Song Y, et al. A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PloS one. 2013; 8(9):e73268. doi: 10.1371/journal.pone.0073268 PMID: 24039897

13. Li J, Chen Y, Zhao J, Kong F, Zhang Y. miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer letters. 2011; 304(1):52–9. doi: 10.1016/j.canlet.2011.02.003 PMID: 21354697

14. Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, et al. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Molecular oncology. 2014; 8(1):83–92. doi: 10.1016/j.molonc.2013.09.004 PMID: 24145123

15. Li Z, Du L, Dong Z, Yang Y, Zhang X, Wang L, et al. MiR-203 suppresses ZNF217 upregulation in colorectal cancer and its oncogenicity. PloS one. 2015; 10(1):e0116170. doi: 10.1371/journal.pone.0116170 PMID: 25621839

16. Youden WJ. Index for rating diagnostic tests. Cancer. 1950; 3(1):32–5. PMID: 15405679

17. Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell death & disease. 2010; 1:e105.

18. Wang F, Liu M, Li X, Tang H. MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS letters. 2013; 587(5):488–95. doi: 10.1016/j.febslet.2013.01.016 PMID: 23337879

19. Tian H, Liu S, Zhang J, Zhang S, Cheng L, Li C, et al. Enhancement of cisplatin sensitivity in lung cancer xenografts by liposome-mediated delivery of the plasmid expressing small hairpin RNA targeting Survivin. Journal of biomedical nanotechnology. 2012; 8(4):633–41. PMID: 22852473

20. Kumar B, Yadav A, Lang JC, Cipolla MJ, Schmitt AC, Arradaza N, et al. YM155 reverses cisplatin resistance

in head and neck cancer by decreasing cytoplasmic survivin levels. Molecular cancer therapeutics. 2012; 11(9):1988–98. doi: 10.1158/1535-7163.MCT-12-0167 PMID: 22723337

21. Sternberg CN, Bellmunt J, Sonpavde G, Siefker-Radtke AO, Stadler WM, Bajorin DF, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Chemotherapy for urothelial carcinoma-neoadjuvant and adjuvant settings. European urology. 2013; 63(1):58–66. doi: 10.1016/j.eururo.2012.08.010 PMID: 22917984

22. von der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. Journal of clinical oncology. 2000; 18(17):3068–77. PMID: 11001674

23. Roberts JT, von der Maase H, Sengelov L, Conte PF, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine/cisplatin and methotrexate/vinblastine/doxorubicin/cisplatin in patients with locally advanced and metastatic bladder cancer. Annals of oncology. 2006;17 (Suppl 5):118–22.

24. Nordentoft I, Birkenkamp-Demtroder K, Agerbaek M, Theodorescu D, Ostenfeld MS, Hartmann A, et al. miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC medical genomics. 2012; 5:40. doi: 10.1186/1755-8794-5-40 PMID: 22954303

25. Jamali Z, Asl Aminabadi N, Attaran R, Pournagiazar F, Ghertasi Oskouei S, Ahmadpour F. MicroRNAs as prognostic molecular signatures in human head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral oncology. 2015; 51(4):321–31. doi: 10.1016/j.oraloncology.2015.01.008 PMID: 25677760

26. He J, Deng Y, Yang G, Xie W. MicroRNA-203 down-regulation is associated with unfavorable prognosis in human glioma. Journal of surgical oncology. 2013; 108(2):121–5. doi: 10.1002/jso.23315 PMID: 23813496

27. Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MA, et al. MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer prevention research. 2013; 6(3):196–205. doi: 10.1158/1940-6207.CAPR-12-0276 PMID: 23466817

28. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012; 31(15):1869–83. doi: 10.1038/onc.2011.384 PMID: 21892204

29. Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clinical cancer research. 2014; 20(7):1990–2000. doi: 10.1158/1078-0432.CCR-13-2805 PMID: 24516043

30. Vinall RL, Ripoll AZ, Wang S, Pan CX, deVere White RW. MiR-34a chemosensitizes bladder cancer cells to cisplatin treatment regardless of p53-Rb pathway status. International journal of cancer. 2012; 130(11):2526–38.

31. Li H, Yu G, Shi R, Lang B, Chen X, Xia D, et al. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy. Molecular cancer. 2014; 13:8. doi: 10.1186/1476-4598-13-8 PMID: 24423412

32. Wang X. The expanding role of mitochondria in apoptosis. Genes & development. 2001; 15(22):2922–33.

33. Chen XN, Wang KF, Xu ZQ, Li SJ, Liu Q, Fu DH, et al. MiR-133b regulates bladder cancer cell proliferation and apoptosis by targeting Bcl-w and Akt1. Cancer cell international. 2014; 14:70. doi: 10.1186/s12935-014-0070-3 PMID: 25414595

34. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature medicine. 1997; 3(8):917–21. PMID: 9256286

35. Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K, et al. An IAP-IAP complex inhibits apoptosis. The Journal of biological chemistry. 2004; 279(33):34087–90. PMID: 15218035

36. Shariat SF, Karakiewicz PI, Godoy G, Karam JA, Ashfaq R, Fradet Y, et al. Survivin as a prognostic marker for urothelial carcinoma of the bladder: a multicenter external validation study. Clinical cancer research. 2009; 15(22):7012–9. doi: 10.1158/1078-0432.CCR-08-2554 PMID: 19903782

Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#