#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Effect of Intermittent Antenatal Iron Supplementation on Maternal and Infant Outcomes in Rural Viet Nam: A Cluster Randomised Trial


Background:
Anemia affects over 500 million women, and in pregnancy is associated with impaired maternal and infant outcomes. Intermittent antenatal iron supplementation is an attractive alternative to daily dosing; however, the impact of this strategy on infant outcomes remains unclear. We compared the effect of intermittent antenatal iron supplementation with daily iron supplementation on maternal and infant outcomes in rural Viet Nam.

Methods and Findings:
This cluster randomised trial was conducted in Ha Nam province, Viet Nam. 1,258 pregnant women (<16 wk gestation) in 104 communes were assigned to daily iron–folic acid (IFA), twice weekly IFA, or twice weekly multiple micronutrient (MMN) supplementation. Primary outcome was birth weight. Mean birth weight was 3,148 g (standard deviation 416). There was no difference in the birth weights of infants of women receiving twice weekly IFA compared to daily IFA (mean difference [MD] 28 g; 95% CI −22 to 78), or twice weekly MMN compared to daily IFA (MD −36.8 g; 95% CI −82 to 8.2). At 32 wk gestation, maternal ferritin was lower in women receiving twice weekly IFA compared to daily IFA (geometric mean ratio 0.73; 95% CI 0.67 to 0.80), and in women receiving twice weekly MMN compared to daily IFA (geometric mean ratio 0.62; 95% CI 0.57 to 0.68), but there was no difference in hemoglobin levels. Infants of mothers who received twice weekly IFA had higher cognitive scores at 6 mo of age compared to those who received daily IFA (MD 1.89; 95% CI 0.23 to 3.56).

Conclusions:
Twice weekly antenatal IFA or MMN did not produce a clinically important difference in birth weight, when compared to daily IFA supplementation. The significant improvement in infant cognitive outcomes at 6 mo of age following twice weekly antenatal IFA requires further exploration, and provides additional support for the use of intermittent, rather than daily, antenatal IFA in populations with low rates of iron deficiency.

Trial registration:
Australia New Zealand Clinical Trials Registry 12610000944033

Please see later in the article for the Editors' Summary


Vyšlo v časopise: The Effect of Intermittent Antenatal Iron Supplementation on Maternal and Infant Outcomes in Rural Viet Nam: A Cluster Randomised Trial. PLoS Med 10(6): e32767. doi:10.1371/journal.pmed.1001470
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001470

Souhrn

Background:
Anemia affects over 500 million women, and in pregnancy is associated with impaired maternal and infant outcomes. Intermittent antenatal iron supplementation is an attractive alternative to daily dosing; however, the impact of this strategy on infant outcomes remains unclear. We compared the effect of intermittent antenatal iron supplementation with daily iron supplementation on maternal and infant outcomes in rural Viet Nam.

Methods and Findings:
This cluster randomised trial was conducted in Ha Nam province, Viet Nam. 1,258 pregnant women (<16 wk gestation) in 104 communes were assigned to daily iron–folic acid (IFA), twice weekly IFA, or twice weekly multiple micronutrient (MMN) supplementation. Primary outcome was birth weight. Mean birth weight was 3,148 g (standard deviation 416). There was no difference in the birth weights of infants of women receiving twice weekly IFA compared to daily IFA (mean difference [MD] 28 g; 95% CI −22 to 78), or twice weekly MMN compared to daily IFA (MD −36.8 g; 95% CI −82 to 8.2). At 32 wk gestation, maternal ferritin was lower in women receiving twice weekly IFA compared to daily IFA (geometric mean ratio 0.73; 95% CI 0.67 to 0.80), and in women receiving twice weekly MMN compared to daily IFA (geometric mean ratio 0.62; 95% CI 0.57 to 0.68), but there was no difference in hemoglobin levels. Infants of mothers who received twice weekly IFA had higher cognitive scores at 6 mo of age compared to those who received daily IFA (MD 1.89; 95% CI 0.23 to 3.56).

Conclusions:
Twice weekly antenatal IFA or MMN did not produce a clinically important difference in birth weight, when compared to daily IFA supplementation. The significant improvement in infant cognitive outcomes at 6 mo of age following twice weekly antenatal IFA requires further exploration, and provides additional support for the use of intermittent, rather than daily, antenatal IFA in populations with low rates of iron deficiency.

Trial registration:
Australia New Zealand Clinical Trials Registry 12610000944033

Please see later in the article for the Editors' Summary


Zdroje

1. World Health Organization (2008) Worldwide prevalence of anaemia: 1993–2005: WHO global database on anaemia. Geneva: World Health Organization.

2. World Health Organization (2001) Iron deficiency anaemia: assessment, prevention and control—a guide for programme managers. Geneva: World Health Organization.

3. International Anemia Consultative Group Symposium (2002) Report of the 2001 International Anemia Consultative Group Symposium. Why is iron important and what to do about it: a new perspective. Washington (District of Columbia): International Anemia Consultative Group Symposium. 50 p.

4. World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization.

5. MurphyJF, O'RiordanJ, NewcombeRG, ColesEC, PearsonJF (1986) Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet 1: 992–995.

6. SteerPJ (2000) Maternal hemoglobin concentration and birth weight. Am J Clin Nutr 71: 1285S–1287S.

7. StoltzfusRJ (2011) Iron interventions for women and children in low-income countries. J Nutr 141: 756S–762S.

8. YipR (1996) Iron supplementation during pregnancy: is it effective? Am J Clin Nutr 63: 853–855.

9. World Health Organization Maternal and Child Health Unit (1990) Iron supplementation during pregnancy: why aren't women complying? A review of available information. Geneva: World Health Organization. 48 p.

10. LaoTT, TamKF, ChanLY (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15: 1843–1848.

11. Pena-RosasJP, ViteriFE (2009) Effects and safety of preventive oral iron or iron+folic acid supplementation for women during pregnancy. Cochrane Database Syst Rev 2009: CD004736.

12. SchollTO (2005) Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr 81: 1218S–1222S.

13. CasanuevaE, ViteriFE (2003) Iron and oxidative stress in pregnancy. J Nutr 133: 1700S–1708S.

14. SandstromB (2001) Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 85 (Suppl 2) S181–S185.

15. LaillouA, PhamTV, TranNT, LeHT, WieringaF, et al. (2012) Micronutrient deficits are still public health issues among women and young children in Vietnam. PLoS ONE 7: e34906 doi:10.1371/journal.pone.0034906

16. Viet Nam Prime Minister, Viet Nam Ministry of Health (2012) National nutrition strategy for 2011–2020, with a vision toward 2030. Hanoi: Medical Publishing House.

17. ThurnhamD (2012) Micronutrient status in Vietnam. Comparisons and contrasts with Thailand and Cambodia. Sight and Life 26: 56–67.

18. World Health Organization (2011) Guideline: intermittent iron and folic acid supplementation in non-anaemic pregnant women. Geneva: World Health Organization.

19. Pena-RosasJP, De-RegilLM, DowswellT, ViteriFE (2012) Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2012: CD009997.

20. ViteriFE, LiuX, TolomeiK, MartinA (1995) True absorption and retention of supplemental iron is more efficient when iron is administered every three days rather than daily to iron-normal and iron-deficient rats. J Nutr 125: 82–91.

21. ViteriFE (1998) A new concept in the control of iron deficiency: community-based preventive supplementation of at-risk groups by the weekly intake of iron supplements. Biomed Environ Sci 11: 46–60.

22. General Statistics Office of Viet Nam (2011) Statistical yearbook of Vietnam 2011. Hanoi: Statistical Publishing House.

23. Viet Nam Academy of Social Science (2006) Vietnam poverty update: poverty and poverty reduction in Vietnam 1993–2004. Hanoi: Viet Nam Academy of Social Science.

24. United Nations Children's Fund, World Health Organization, United Nations University (1999) Composition of a multi-micronutrient supplement to be used in pilot programmes among pregnant women in developing countries. Report of a UNICEF/WHO/UNU Workshop. New York: United Nations Children's Fund.

25. World Health Organization (2006) The WHO child growth standards. Geneva: World Health Organization.

26. World Health Organization (2011 January) WHO Anthro, version 3.2.2 [computer program]. Geneva: World Health Organization.

27. World Health Organization (2007) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd ed. Geneva: World Health Organization.

28. de BenoistB (2008) Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 29: S238–S244.

29. AghajafariF, NagulesapillaiT, RonksleyPE, ToughSC, O'BeirneM, et al. (2013) Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies. BMJ 346: f1169.

30. World Health Organization (2007) Assessing the iron status of populations. Geneva: World Health Organization.

31. Bayley N (2006) Bayley scales of infant and toddler development, 3rd edition. San Antonio (Texas): PsychCorp.

32. FisherJ, TranT, BiggsB, DwyerT, CaseyG, et al. (2011) Iodine status in late pregnancy and psychosocial determinants of iodized salt use in rural northern Viet Nam. Bull World Health Organ 89: 813–820.

33. CaseyGJ, PhucTQ, MacgregorL, MontresorA, MihrshahiS, et al. (2009) A free weekly iron-folic acid supplementation and regular deworming program is associated with improved hemoglobin and iron status indicators in Vietnamese women. BMC Public Health 9: 261.

34. MihrshahiS, CaseyGJ, MontresorA, PhucTQ, ThachDT, et al. (2009) The effectiveness of 4 monthly albendazole treatment in the reduction of soil-transmitted helminth infections in women of reproductive age in Viet Nam. Int J Parasitol 39: 1037–1043.

35. ZengL, DibleyMJ, ChengY, DangS, ChangS, et al. (2008) Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. BMJ 337: a2001.

36. VossW, NeubauerAP, WachtendorfM, VerheyJF, KattnerE (2007) Neurodevelopmental outcome in extremely low birth weight infants: what is the minimum age for reliable developmental prognosis? Acta Paediatr 96: 342–347.

37. ZiaeiS, NorroziM, FaghihzadehS, JafarbeglooE (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin > or  = 13.2 g/dl. BJOG 114: 684–688.

38. World Health Organization (2012) e-Library of Evidence for Nutrition Actions (eLENA) [database]. Geneva: World Health Organization.

39. CaseyGJ, JolleyD, PhucTQ, TinhTT, ThoDH, et al. (2010) Long-term weekly iron-folic acid and de-worming is associated with stabilised haemoglobin and increasing iron stores in non-pregnant women in Vietnam. PLoS ONE 5: e15691 doi:10.1371/journal.pone.0015691

40. CaseyGJ, SartoriD, HortonSE, PhucTQ, PhuLB, et al. (2011) Weekly iron-folic acid supplementation with regular deworming is cost-effective in preventing anaemia in women of reproductive age in Vietnam. PLoS ONE 6: e23723 doi:10.1371/journal.pone.0023723

41. PasrichaSR, CaseyGJ, PhucTQ, MihrshahiS, MacGregorL, et al. (2009) Baseline iron indices as predictors of hemoglobin improvement in anemic Vietnamese women receiving weekly iron-folic acid supplementation and deworming. Am J Trop Med Hyg 81: 1114–1119.

42. PhucTQ, MihrshahiS, CaseyGJ, PhuLB, TienNT, et al. (2009) Lessons learned from implementation of a demonstration program to reduce the burden of anemia and hookworm in women in Yen Bai Province, Viet Nam. BMC Public Health 9: 266.

43. PasseriniL, CaseyGJ, BiggsBA, CongDT, PhuLB, et al. (2012) Increased birth weight associated with regular pre-pregnancy deworming and weekly iron-folic acid supplementation for Vietnamese women. PLoS Negl Trop Dis 6: e1608 doi:10.1371/journal.pntd.0001608

44. Cavalli-SforzaT, BergerJ, SmitasiriS, ViteriF (2005) Weekly iron-folic acid supplementation of women of reproductive age: impact overview, lessons learned, expansion plans, and contributions toward achievement of the millennium development goals. Nutr Rev 63: S152–S158.

45. ViteriFE, BergerJ (2005) Importance of pre-pregnancy and pregnancy iron status: can long-term weekly preventive iron and folic acid supplementation achieve desirable and safe status? Nutr Rev 63: S65–S76.

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2013 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#