#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Parallel altitudinal clines reveal trends in adaptive evolution of genome size in


Genome size in plants can vary by orders of magnitude, but this variation has long been considered to be of little functional consequence. Studying three independent adaptations to high altitude in Zea mays, we find that genome size experiences parallel pressures from natural selection, causing a reduction in genome size with increasing altitude. Though reductions in overall repetitive content are responsible for the genome size change, we find that only those individual loci contributing most to the variation in genome size are individually targeted by selection. To identify the phenotype influenced by genome size, we study how variation in genome size within a single wild population impacts leaf growth and cell division. We find that genome size variation correlates negatively with the rate of cell division, suggesting that individuals with larger genomes require longer to complete a mitotic cycle. Finally, we reanalyze data from maize inbreds to show that faster cell division is correlated with earlier flowering, connecting observed variation in genome size to an important adaptive phenotype.


Vyšlo v časopise: Parallel altitudinal clines reveal trends in adaptive evolution of genome size in. PLoS Genet 14(5): e32767. doi:10.1371/journal.pgen.1007162
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1007162

Souhrn

Genome size in plants can vary by orders of magnitude, but this variation has long been considered to be of little functional consequence. Studying three independent adaptations to high altitude in Zea mays, we find that genome size experiences parallel pressures from natural selection, causing a reduction in genome size with increasing altitude. Though reductions in overall repetitive content are responsible for the genome size change, we find that only those individual loci contributing most to the variation in genome size are individually targeted by selection. To identify the phenotype influenced by genome size, we study how variation in genome size within a single wild population impacts leaf growth and cell division. We find that genome size variation correlates negatively with the rate of cell division, suggesting that individuals with larger genomes require longer to complete a mitotic cycle. Finally, we reanalyze data from maize inbreds to show that faster cell division is correlated with earlier flowering, connecting observed variation in genome size to an important adaptive phenotype.


Zdroje

1. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131: 452–462. doi: 10.1016/j.cell.2007.10.022 17981114

2. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115: 49–63. doi: 10.1023/A:1016072014259 12188048

3. Pagel M, Johnstone RA (1992) Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proceedings of the Royal Society of London B: Biological Sciences 249: 119–124. doi: 10.1098/rspb.1992.0093

4. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome biology 17: 37. doi: 10.1186/s13059-016-0908-1 26926526

5. Gregory T (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews 76: 65–101. doi: 10.1111/j.1469-185X.2000.tb00059.x 11325054

6. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302: 1401–1404. doi: 10.1126/science.1089370 14631042

7. Kuo CH, Moran NA, Ochman H (2009) The consequences of genetic drift for bacterial genome complexity. Genome Research 19: 1450–1454. doi: 10.1101/gr.091785.109 19502381

8. Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theoretical population biology 61, 531–544. doi: 10.1006/tpbi.2002.1605 12167373

9. Ågren JA, Greiner S, Johnson MT, Wright SI (2015) No evidence that sex and transposable elements drive genome size variation in evening primroses. Evolution 69: 1053–1062. doi: 10.1111/evo.12627 25690700

10. Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, Ahearne TE, Cutter AD, Phillips PC (2015) Reproductive mode and the evolution of genome size and structure in Caenorhabditis nematodes. PLoS genetics 11: e1005323. doi: 10.1371/journal.pgen.1005323 26114425

11. Lefébure T, Morvan C, Malard F, François C, Konecny-Dupré L, et al. (2017) Less effective selection leads to larger genomes. Genome Research: gr–212589. doi: 10.1101/gr.212589.116 28424354

12. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 11: 1060–2. doi: 10.1126/science.287.5455.1060

13. Whitney KD, Garland T Jr. Did genetic drift drive increases in genome complexity? PLoS genetics 6(8):e1001080. doi: 10.1371/journal.pgen.1001080 20865118

14. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, et al. (2005) Evolution of genome size in Brassicaceae. Annals of Botany 95: 229–235. doi: 10.1093/aob/mci016 15596470

15. Baetcke K, Sparrow A, Nauman C, Schwemmer SS (1967) The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proceedings of the National Academy of Sciences 58: 533–540. doi: 10.1073/pnas.58.2.533

16. Pegington C, Rees H, et al. (1970) Chromosome weights and measures in the Triticinae. Heredity 25: 195–205. doi: 10.1038/hdy.1970.24

17. Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, et al. (2007) Correlated evolution of genome size and seed mass. New Phytologist 173: 422–437. doi: 10.1111/j.1469-8137.2006.01919.x 17204088

18. Gregory TR, Hebert PD, Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201–208. doi: 10.1046/j.1365-2540.2000.00661.x 10762390

19. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34: 247–278. 372199

20. Gregory TR, Hebert PD (1999) The modulation of DNA content: proximate causes and ultimate consequences. Genome Research 9: 317–324. 10207154

21. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. doi: 10.1093/aob/mci011 15596465

22. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82: 27–35. doi: 10.1006/anbo.1998.0725

23. Šmarda P, Bureš P, et al. (2010) Understanding intraspecific variation in genome size in plants. Preslia 82: 41–61.

24. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, et al. (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nature Genetics 45: 884–890. doi: 10.1038/ng.2678 23793030

25. Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, et al. (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264–276. doi: 10.1111/nph.12247 23550586

26. Zaitlin D, Pierce AJ (2010) Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 53: 1066–1082. doi: 10.1139/G10-077 21164539

27. Kang M, Wang J, Huang H (2015) Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports 5: 11636. doi: 10.1038/srep11636 26109237

28. Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Annals of Botany 82: 107–115. doi: 10.1006/anbo.1998.0757

29. Laurie DA and Bennett MD (1985) Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation Heredity 55: 307–313.

30. Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the BZ locus. Proceedings of the National Academy of Sciences 103: 17644–17649. doi: 10.1073/pnas.0603080103

31. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. The Plant Cell 17: 343–360. doi: 10.1105/tpc.104.025627 15659640

32. Kato Yamakake TA, et al. (1976) Cytological studies of maize [Zea mays L.] and teosinte [Zea mexicana Schrader Kuntze] in relation to their origin and evolution.

33. Bretting P, Goodman M (1989) Karyotypic variation in mesoamerican races of maize and its systematic significance. Economic Botany 43: 107–124. doi: 10.1007/BF02859330

34. Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genetics 10: e1004412. doi: 10.1371/journal.pgen.1004412 25102153

35. Ross-Ibarra J, Tenaillon M, Gaut BS (2009) Historical divergence and gene flow in the genus Zea. Genetics 181: 1399–1413. doi: 10.1534/genetics.108.097238 19153259

36. Hufford MB, Martínez-Meyer E, Gaut BS, Eguiarte LE, Tenaillon MI (2012) Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLoS One 7: e47659. doi: 10.1371/journal.pone.0047659 23155371

37. Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, et al. (2013) The genomic signature of crop-wild introgression in maize. PLoS Genetics 9: e1003477. doi: 10.1371/journal.pgen.1003477 23671421

38. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J (2013) Complex patterns of local adaptation in teosinte. Genome Biology and Evolution 5: 1594–1609. doi: 10.1093/gbe/evt109 23902747

39. O’Brien AM, Ross-Ibarra J. Teosinte genotype-by-sequencing: central highland populations. URL http://dx.doi.org/10.6084/m9.figshare.4714030.

40. Albert P, Gao Z, Danilova T, Birchler J (2010) Diversity of chromosomal karyotypes in maize and its relatives. Cytogenetic and Genome Research 129: 6–16. doi: 10.1159/000314342 20551613

41. Leiboff S, Li X, Hu HC, Todt N, Yang J, et al. (2015) Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications 6. doi: 10.1038/ncomms9974 26584889

42. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, et al. (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences 108: 1088–1092. doi: 10.1073/pnas.1013011108

43. Takuno S, Ralph P, Swarts K, Elshire RJ, Glaubitz JC, et al. (2015) Independent molecular basis of convergent highland adaptation in maize. Genetics 200: 1297–1312. doi: 10.1534/genetics.115.178327 26078279

44. Rayburn AL, Auger J (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theoretical and Applied Genetics 79: 470–474. doi: 10.1007/BF00226155 24226450

45. Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177–200. doi: 10.1111/j.1469-8137.1987.tb04689.x

46. Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1: 225–236. doi: 10.1039/b201230h

47. Piperno DR, Flannery KV. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications (2001) Proceedings of the National Academy of Sciences 98(4):2101–3. doi: 10.1073/pnas.98.4.2101

48. Rosato M, Chiavarino A, Naranjo C, Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). American Journal of Botany 85: 168–168. doi: 10.2307/2446305 21684902

49. Chevin LM, Hospital F (2008) Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics, 180(3), 1645–1660. doi: 10.1534/genetics.108.093351 18832353

50. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, et al. (2012) Maize hapmap2 identifies extant variation from a genome in flux. Nature Genetics 44: 803–807. doi: 10.1038/ng.2313 22660545

51. Dennis E, Peacock W (1984) Knob heterochromatin homology in maize and its relatives. Journal of Molecular Evolution 20: 341–350. doi: 10.1007/BF02104740 6439888

52. Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, et al. (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415–426. 10471723

53. Kanizay LB, Pyhäjärvi T, Lowry EG, Hufford MB, Peterson DG, Ross-Ibarra J, Dawe RK (2013) Diversity and abundance of the abnormal chromosome 10 meiotic drive complex in Zea mays Genetics 153: 415–426.

54. Kanizay LB, Pyhäjärvi T, Lowry EG, Hufford MB, Peterson DG, Ross-Ibarra J, and Dawe RK (2013) Intragenomic conflict between the two major knob repeats of maize. Genetics 194: 81–89. doi: 10.1534/genetics.112.148882 23457233

55. Bennett M (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London B: Biological Sciences 181: 109–135. doi: 10.1098/rspb.1972.0042 4403285

56. Šímová I, Herben T (2012) Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society of London B: Biological Sciences 279: 867–875. doi: 10.1098/rspb.2011.1284

57. Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells, Molecules, and Diseases 27: 830–843. doi: 10.1006/bcmd.2001.0457 11783946

58. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986. doi: 10.1111/j.1469-8137.2008.02528.x 18564303

59. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, et al. (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529: 418–422. doi: 10.1038/nature16496 26760202

60. Van Volkenburgh E, Boyer JS (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiology 77: 190–194. doi: 10.1104/pp.77.1.190 16664006

61. Salah HBH, Tardieu F (1996) Quantitative analysis of the combined effects of temperature, evaporative demand and light on leaf elongation rate in well-watered field and laboratory-grown maize plants. Journal of Experimental Botany 47: 1689–1698. doi: 10.1093/jxb/47.11.1689

62. Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C (2016) Testing the link between genome size and growth rate in maize. Technical report, PeerJ Preprints.

63. Jiang C, Edmeades G, Armstead I, Lafitte H, Hayward M, et al. (1999) Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theoretical and Applied Genetics 99: 1106–1119. doi: 10.1007/s001220051315

64. Rodriguez FJ, Sanchez GJ, Baltazar MB, de la Cruz L L, Santacruz-Ruvalcaba F, et al. (2006) Characterization of floral morphology and synchrony among Zea species in Mexico. Maydica 51: 383–398.

65. Rayburn AL, Dudley J, Biradar D (1994) Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breeding 112: 318–322. doi: 10.1111/j.1439-0523.1994.tb00690.x

66. Watson JM, Platzer A, Kazda A, Akimcheva S, Valuchova S, et al. (2016) Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis. Proceedings of the National Academy of Sciences: 201609686. doi: 10.1073/pnas.1609686113

67. Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309: 1694–1696. doi: 10.1126/science.1117768 16099949

68. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka KI, et al. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the Cucurbits. The Plant Cell 19: 1488–1506. doi: 10.1105/tpc.107.051920 17540715

69. Jian Yinqiao and Xu Cheng and Guo Zifeng and Wang Shanhong and Xu Yunbi and Zou Cheng (2017) Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Scientific Reports 7: 11636. doi: 10.1038/s41598-017-06153-8

70. Hessen DO, Jeyasingh PD, Neiman M, Weider LJ (2010) Genome streamlining and the elemental costs of growth. Trends in Ecology & Evolution 25: 75–80. doi: 10.1016/j.tree.2009.08.004

71. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. (2011) A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS One 6: e19379. doi: 10.1371/journal.pone.0019379 21573248

72. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, et al. (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9: e90346. doi: 10.1371/journal.pone.0090346 24587335

73. Endelman JB, Jannink JL (2012) Shrinkage estimation of the realized relationship matrix. G3: Genes—Genomes—Genetics 2: 1405–1413. doi: 10.1534/g3.112.004259 23173092

74. Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GY, et al. (2015) Linkimpute: Fast and accurate genotype imputation for nonmodel organisms. G3: Genes—Genomes—Genetics 5: 2383–2390. doi: 10.1534/g3.115.021667 26377960

75. Alexander David H and Lange Kenneth (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC bioinformatics 12: 246. doi: 10.1186/1471-2105-12-246 21682921

76. Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, et al. (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal 44: 1054–1064. doi: 10.1111/j.1365-313X.2005.02591.x 16359397

77. Swarts K., Gutaker R.M., Benz B., Blake M., Bukowski R., Holland, et al. (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America Science 357:512–5. doi: 10.1126/science.aam9425 28774930

78. Bilinski P, Distor K, Gutierrez-Lopez J, Mendoza GM, Shi J, et al. (2015) Diversity and evolution of centromere repeats in the maize genome. Chromosoma 124: 57–65. doi: 10.1007/s00412-014-0483-8 25190528

79. Stark EA, Connerton I, Bennett ST, Barnes SR, Parker JS, et al. (1996) Molecular analysis of the structure of the maize B-chromosome. Chromosome Research 4: 15–23. doi: 10.1007/BF02254939 8653263

80. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115. doi: 10.1126/science.1178534 19965430

81. Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics 5: e1000732. doi: 10.1371/journal.pgen.1000732 19936065

82. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows—wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

83. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178: 1709–1723. doi: 10.1534/genetics.107.080101 18385116

84. MacKinnon David P and Rose JS and Chassin L and Presson CC and Sherman SJ (2000) Contrasts in multiple mediator models Multivariate applications in substance use research: New methods for new questions: 141–160.

85. Orcen N, Nazarian G, Barlas T, Irget E (2013) Variation in stomatal traits based on plant growth parameters in corn (Zea mays L.). Annals of Biological Research 4: 25–29.

86. Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiology 109: 861–870. doi: 10.1104/pp.109.3.861 12228638

87. Bos H, Tijani-Eniola H, Struik P (2000) Morphological analysis of leaf growth of maize: responses to temperature and light intensity. NJAS-Wageningen Journal of Life Sciences 48: 181–198. doi: 10.1016/S1573-5214(00)80013-5

88. Plummer M (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.

89. Therneau T (2012) COXME: mixed effects Cox models. R package version 2.2-3. Vienna: R Foundation for Statistical Computing.

90. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44: 821–824. doi: 10.1038/ng.2310 22706312

91. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, et al. (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4: 1. doi: 10.1186/s13742-015-0047-8

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#