#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A less selfish view of genome size evolution in maize


article has not abstract


Vyšlo v časopise: A less selfish view of genome size evolution in maize. PLoS Genet 14(5): e32767. doi:10.1371/journal.pgen.1007249
Kategorie: Perspective
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1007249

Souhrn

article has not abstract


Zdroje

1. Commoner B. Roles of deoxyribonucleic acid in inheritance. Nature. 1964;202: 960–968. 14197326

2. Bennett MD. Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B Biol Sci. 1972;181: 109–135. 4403285

3. Lavergne S, Muenke NJ, Molofsky J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot. 2010;105: 109–116. doi: 10.1093/aob/mcp271 19887472

4. Herben T, Suda J, Klimesová J, Mihulka S, Ríha P, Símová I. Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Ann Bot. 2012;110: 1357–1367. doi: 10.1093/aob/mcs099 22628380

5. Wright NA, Gregory TR, Witt CC. Metabolic “engines” of flight drive genome size reduction in birds. Proc Biol Sci. 2014;281: 20132780. doi: 10.1098/rspb.2013.2780 24478299

6. Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote M, Lorant A, et al. (2018) Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet 14(3): e1007249

7. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol. 2011;3: 219–229. doi: 10.1093/gbe/evr008 21296765

8. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326: 1112–1115. doi: 10.1126/science.1178534 19965430

9. Bretting PK, Goodman MM. Karyotypic variation in Mesoamerican races of maize and its systematic significance. Econ Bot. Springer-Verlag; 1989;43: 107–124.

10. Poggio L, Rosato M, Chiavarino AM, Naranjo CA. Genome Size and Environmental Correlations in Maize (Zea mays ssp. mays, Poaceae). Ann Bot. Oxford University Press; 1998;82: 107–115.

11. Rosato M, Chiavarino A, Naranjo C, Hernandez J, Poggio L. Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). Am J Bot. 1998;85: 168. 21684902

12. Buckler ES 4th, Phelps-Durr TL, Buckler CS, Dawe RK, Doebley JF, Holtsford TP. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics. 1999;153: 415–426. 10471723

13. Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, et al. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 2013;199: 264–276. doi: 10.1111/nph.12247 23550586

14. Berg JJ, Coop G. A Population Genetic Signal of Polygenic Adaptation. PLoS Genet. Public Library of Science; 2014;10: e1004412. doi: 10.1371/journal.pgen.1004412 25102153

15. Ananiev EV, Phillips RL, Rines HW. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A. 1998;95: 10785–10790. 9724782

16. Rayburn AL, Dudley JW, Biradar DP. Selection for Early Flowering Results in Simultaneous Selection for Reduced Nuclear DNA Content in Maize. Plant Breed. Blackwell Publishing Ltd; 1994;112: 318–322.

17. Jiang C, Edmeades GO, Armstead I, Lafitte HR, Hayward MD, Hoisington D. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet. Springer-Verlag; 1999;99: 1106–1119.

18. Rodriguez JG, Sánchez G, Baltazar BM, De la Cruz LL, Santacruz-Ruvalcaba F, Ron PJ, et al. Characterization of floral morphology and synchrony among Zea species in Mexico. Maydica. 2006; Available: http://agris.fao.org/agris-search/search.do?recordID=IT2007602235

19. Símová I, Herben T. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proc Biol Sci. 2012;279: 867–875. doi: 10.1098/rspb.2011.1284 21881135

20. Jian Y, Xu C, Guo Z, Wang S, Xu Y, Zou C. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Sci Rep. 2017;7: 5954. doi: 10.1038/s41598-017-06153-8 28729714

21. Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018;16: e2003706. doi: 10.1371/journal.pbio.2003706 29324757

22. Higgins DM, Lowry EG, Kanizay LB, Becraft PW, Hall DW, Dawe RK. Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize. Genetics. 2018;208: 297–305. doi: 10.1534/genetics.117.300060 29122827

23. Kupiec M, Petes TD. Allelic and ectopic recombination between Ty elements in yeast. Genetics. 1988;119: 549–559. 2841187

24. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A. 2008;105: 19366–19371. doi: 10.1073/pnas.0807866105 19036926

25. Delprat A, Negre B, Puig M, Ruiz A. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS ONE. 2009;4: e7883. doi: 10.1371/journal.pone.0007883 19936241

26. Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44: 803–807. doi: 10.1038/ng.2313 22660545

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#