#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration


Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.


Vyšlo v časopise: Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003447
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003447

Souhrn

Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.


Zdroje

1. LiJZ, AbsherDM, TangH, SouthwickAM, CastoAM, et al. (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319: 1100–1104.

2. FuQ, RudanP, PaaboS, KrauseJ (2012) Complete mitochondrial genomes reveal neolithic expansion into europe. PLoS ONE 7: e32473 doi:10.1371/journal.pone.0032473

3. DeguillouxMF, LeahyR, PemongeMH, RottierS (2012) European neolithization and ancient DNA: an assessment. Evol Anthropol 21: 24–37.

4. RischN, BurchardE, ZivE, TangH (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol 3: comment2007.

5. LohmuellerKE, MauneyMM, ReichD, BravermanJM (2006) Variants associated with common disease are not unusually differentiated in frequency across populations. Am J Hum Genet 78: 130–136.

6. MylesS, DavisonD, BarrettJ, StonekingM, TimpsonN (2008) Worldwide population differentiation at disease-associated SNPs. BMC Med Genomics 1: 22.

7. SabetiPC, ReichDE, HigginsJM, LevineHZ, RichterDJ, et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419: 832–837.

8. CurratM, TrabuchetG, ReesD, PerrinP, HardingRM, et al. (2002) Molecular analysis of the beta-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the beta(S) Senegal mutation. Am J Hum Genet 70: 207–223.

9. ChevinLM, BilliardS (2008) Hospital F (2008) Hitchhiking both ways: effect of two interfering selective sweeps on linked neutral variation. Genetics 180: 301–316.

10. CoronaE, DudleyJT, ButteAJ (2010) Extreme evolutionary disparities seen in positive selection across seven complex diseases. PLoS ONE 5: e12236 doi:10.1371/journal.pone.0012236

11. CastoAM, FeldmanMW (2011) Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet 7: e1001266 doi:10.1371/journal.pgen.1001266

12. HindorffLA, SethupathyP, JunkinsHA, RamosEM, MehtaJP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

13. TennessenJA, AkeyJM (2011) Parallel adaptive divergence among geographically diverse human populations. PLoS Genet 7: e1002127 doi:10.1371/journal.pgen.1002127

14. SanishviliR, NagarajanV, YoderD, BeckerM, XuS, et al. (2008) A 7mum mini-beam improves diffraction data from small or imperfect crystals of macromolecules. Acta Crystallogr D Biol Crystallogr 64: 425–435.

15. CannHM, de TomaC, CazesL, LegrandMF, MorelV, et al. (2002) A human genome diversity cell line panel. Science 296: 261–262.

16. PandeyJP (2010) Genomewide association studies and assessment of risk of disease. N Engl J Med 363: 2076–2077; author reply 2077.

17. NelsonMR, BrycK, KingKS, IndapA, BoykoAR, et al. (2008) The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am J Hum Genet 83: 347–358.

18. FrazerKA, BallingerDG, CoxDR, HindsDA, StuveLL, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

19. WardRH, NeelJV (1976) The genetic structure of a tribal population, the Yanomama Indians. XIV. Clines and their interpretation. Genetics 82: 103–121.

20. YoungJH, ChangYP, KimJD, ChretienJP, KlagMJ, et al. (2005) Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet 1: e82 doi:10.1371/journal.pgen.0010082

21. PembertonTJ, SandefurCI, JakobssonM, RosenbergNA (2009) Sequence determinants of human microsatellite variability. BMC Genomics 10: 612.

22. HancockAM, WitonskyDB, GordonAS, EshelG, PritchardJK, et al. (2008) Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet 4: e32 doi:10.1371/journal.pgen.0040032

23. HancockAM, WitonskyDB, Alkorta-AranburuG, BeallCM, GebremedhinA, et al. (2011) Adaptations to climate-mediated selective pressures in humans. PLoS Genet 7: e1001375 doi:10.1371/journal.pgen.1001375

24. LachanceJ (2010) Disease-associated alleles in genome-wide association studies are enriched for derived low frequency alleles relative to HapMap and neutral expectations. BMC Med Genomics 3: 57.

25. ChenR, CoronaE, SikoraM, DudleyJT, MorganAA, et al. (2012) Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases. PLoS Genet 8: e1002621 doi:10.1371/journal.pgen.1002621

26. NovembreJ, Di RienzoA (2009) Spatial patterns of variation due to natural selection in humans. Nat Rev Genet 10: 745–755.

27. WatersKM, StramDO, HassaneinMT, Le MarchandL, WilkensLR, et al. (2010) Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups. PLoS Genet 6: e1001078 doi:10.1371/journal.pgen.1001078

28. BustamanteCD, BurchardEG, De la VegaFM (2011) Genomics for the world. Nature 475: 163–165.

29. International HapMapC, AltshulerDM, GibbsRA, PeltonenL, AltshulerDM, et al. (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58.

30. TyskC, LindbergE, JarnerotG, Floderus-MyrhedB (1988) Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29: 990–996.

31. KathiresanS, MelanderO, AnevskiD, GuiducciC, BurttNP, et al. (2008) Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358: 1240–1249.

32. WacholderS, HartgeP, PrenticeR, Garcia-ClosasM, FeigelsonHS, et al. (2010) Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362: 986–993.

33. HancockAM, WitonskyDB, EhlerE, Alkorta-AranburuG, BeallC, et al. (2010) Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci U S A 107(Suppl 2): 8924–8930.

34. NejentsevS, WalkerN, RichesD, EgholmM, ToddJA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324: 387–389.

35. BarreiroLB, Quintana-MurciL (2010) From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11: 17–30.

36. SchulzLO, BennettPH, RavussinE, KiddJR, KiddKK, et al. (2006) Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care 29: 1866–1871.

37. AshleyEA, ButteAJ, WheelerMT, ChenR, KleinTE, et al. (2010) Clinical assessment incorporating a personal genome. Lancet 375: 1525–1535.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#