-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment
Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.
Vyšlo v časopise: Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLoS Genet 9(11): e32767. doi:10.1371/journal.pgen.1003972
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003972Souhrn
Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.
Zdroje
1. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press
2. PerfeitoL, FernandesL, MotaC, GordoI (2007) Adaptive mutations in bacteria: high rate and small effects. Science 317 : 813–815 doi:10.1126/science.1142284
3. OrrHA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6 : 119–127 doi:10.1038/nrg1523
4. CrozatE, PhilippeN, LenskiRE, GeiselmannJ, SchneiderD (2005) Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 169 : 523–532 doi:10.1534/genetics.104.035717
5. WoodsR, SchneiderD, WinkworthCL, RileyMA, LenskiRE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 103 : 9107–9112 doi:10.1073/pnas.0602917103
6. KinnersleyMA, HolbenWE, RosenzweigF (2009) E Unibus Plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. PLoS Genet 5: e1000713 doi:10.1371/journal.pgen.1000713
7. CooperTF, RozenDE, LenskiRE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichiacoli. Proc Natl Acad Sci USA 100 : 1072–1077 doi:10.1073/pnas.0334340100
8. CooperVS, SchneiderD, BlotM, LenskiRE (2001) Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B. J Bacteriol 183 : 2834–2841 doi:10.1128/JB.183.9.2834-2841.2001
9. GreshamD, UsaiteR, GermannSM, LisbyM, BotsteinD, et al. (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107 : 18551–18556 doi:10.1073/pnas.1014023107
10. DunhamMJ, BadraneH, FereaT, AdamsJ, BrownPO, et al. (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99 : 16144–16149 doi:10.1073/pnas.242624799
11. GreshamD, DesaiMM, TuckerCM, JenqHT, PaiDA, et al. (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4: e1000303 doi:10.1371/journal.pgen.1000303
12. KaoKC, SherlockG (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40 : 1499–1504 doi:10.1038/ng.280
13. ArayaCL, PayenC, DunhamMJ, FieldsS (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11 : 88 doi:10.1186/1471-2164-11-88
14. TenaillonO, Rodriguez-VerdugoA, GautRL, McDonaldP, BennettAF, et al. (2012) The Molecular Diversity of Adaptive Convergence. Science 335 : 457–461 doi:10.1126/science.1212986
15. WichmanHA, BadgettMR, ScottLA, BoulianneCM (1999) Different trajectories of parallel evolution during viral adaptation. Science 285 : 422–424.
16. BarrickJE, YuDS, YoonSH, JeongH, OhTK, et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461 : 1243–1247 doi:10.1038/nature08480
17. BarrickJE, LenskiRE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 74 : 119–129 doi:10.1101/sqb.2009.74.018
18. HerronMD, DoebeliM (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11: e1001490 doi:10.1371/journal.pbio.1001490
19. GerrishPJ, LenskiRE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103 : 127–144.
20. GoodBH, RouzineIM, BalickDJ, HallatschekO, DesaiMM (2012) Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc Natl Acad Sci USA 109 : 4950–4955 doi:10.1073/pnas.1119910109
21. DesaiMM, FisherDS (2007) Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176 : 1759–1798 doi:10.1534/genetics.106.067678
22. LangGI, RiceDP, HickmanMJ, SodergrenE, WeinstockGM, et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500 : 571–4 doi:10.1038/nature12344
23. FélixM-A, WagnerA (2006) Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity 100 : 132–140 doi:10.1038/sj.hdy.6800915
24. AnderssonSG, ZomorodipourA, AnderssonJO, Sicheritz-PonténT, AlsmarkUC, et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396 : 133–140 doi:10.1038/24094
25. ShigenobuS, WatanabeH, HattoriM, SakakiY, IshikawaH (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407 : 81–86 doi:10.1038/35024074
26. MendonçaAG, AlvesRJ, Pereira-LealJB (2011) Loss of Genetic Redundancy in Reductive Genome Evolution. PLoS Comput Biol 7: e1001082 doi:10.1371/journal.pcbi.1001082.g006
27. KvitekDJ, SherlockG (2011) Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genet 7: e1002056 doi:10.1371/journal.pgen.1002056
28. DesaiMM, FisherDS, MurrayAW (2007) The speed of evolution and maintenance of variation in asexual populations. CURBIO 17 : 385–394 doi:10.1016/j.cub.2007.01.072
29. LangGI, BotsteinD, DesaiMM (2011) Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188 : 647–661 doi:10.1534/genetics.111.128942
30. LafuenteMJ, GancedoC, JauniauxJC, GancedoJM (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae‡. Molecular … 35 : 161–172.
31. GancedoJM (2008) The early steps of glucose signalling in yeast. FEMS Microbiology Reviews 32 : 673–704 doi:10.1111/j.1574-6976.2008.00117.x
32. TamakiH (2007) Glucose-stimulated cAMP-protein kinase a pathway in yeast Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 104 : 245–250 doi:10.1263/jbb.104.245
33. CameroniE, HuloN, RoosenJ, WinderickxJ, De VirgilioC (2004) The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3 : 462–468.
34. BrewsterJL, GustinMC (1994) Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10 : 425–439 doi:10.1002/yea.320100402
35. WengerJW, PiotrowskiJ, NagarajanS, ChiottiK, SherlockG, et al. (2011) Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. PLoS Genet 7: e1002202 doi:10.1371/journal.pgen.1002202.t005
36. BarrettRDH, MacLeanRC, BellG (2006) Mutations of intermediate effect are responsible for adaptation in evolving Pseudomonas fluorescens populations. Biol Lett 2 : 236–238 doi:10.1098/rsbl.2006.0439
37. ShawFH, GeyerCJ, ShawRG (2002) A COMPREHENSIVE MODEL OF MUTATIONS AFFECTING FITNESS AND INFERENCES FOR ARABIDOPSIS THALIANA - Shaw - 2007 - Evolution - Wiley Online Library. Evolution
38. JosephSB, HallDW (2004) Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168 : 1817–1825 doi:10.1534/genetics.104.033761
39. HallDW, MahmoudizadR, HurdAW (2008) Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations. Genet Res 90 : 229–41.
40. HallDW, JosephSB (2010) A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae. Genetics 185 : 1397–1409 doi:10.1534/genetics.110.118307
41. LangGI, MurrayAW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178 : 67–82 doi:10.1534/genetics.107.071506
42. HottesAK, FreddolinoPL, KhareA, DonnellZN, LiuJC, et al. (2013) Bacterial Adaptation through Loss of Function. PLoS Genet 9: e1003617 doi:10.1371/journal.pgen.1003617
43. GreavesM, MaleyCC (2012) Clonal evolution in cancer. Nature 481 : 306–313 doi:10.1038/nature10762
44. SprouffskeK, MerloLMF, GerrishPJ, MaleyCC, SniegowskiPD (2012) Cancer in Light of Experimental Evolution. Current Biology 22: R762–R771 doi:10.1016/j.cub.2012.06.065
45. PodlahaO, RiesterM, DeS, MichorF (2012) Evolution of the cancer genome. Trends in Genetics 28 : 155–163 doi:10.1016/j.tig.2012.01.003
46. YingH, KimmelmanAC, LyssiotisCA, HuaS, ChuGC, et al. (2012) Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell 149 : 656–670 doi:10.1016/j.cell.2012.01.058
47. ShawRJ, CantleyLC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441 : 424–430 doi:10.1038/nature04869
48. JohnstonM, KimJ-H (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33 : 247–252 doi:10.1042/BST0330247
49. CooperVS, LenskiRE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407 : 736–739 doi:10.1038/35037572
50. HoltRD (2000) Evolutionary biology. Use it or lose it. Nature 407 : 689–690 doi:10.1038/35037703
51. QianW, MaD, XiaoC, WangZ, ZhangJ (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. CellReports 2 : 1399–1410 doi:10.1016/j.celrep.2012.09.017
52. Notley-McRobbL, KingT, FerenciT (2002) rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184 : 806–811.
53. FerenciT (2003) What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol 11 : 457–461.
54. MartinM (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17: pp.10–pp.12.
55. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 : 1754–1760 doi:10.1093/bioinformatics/btp324
56. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20 : 1297–1303 doi:10.1101/gr.107524.110
57. DepristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43 : 491–498 doi:10.1038/ng.806
58. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 : 2078–2079 doi:10.1093/bioinformatics/btp352
59. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57 : 289–300.
60. KumarP, HenikoffS, NgPC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4 : 1073–1081 doi:10.1038/nprot.2009.86
61. DeereD, ShenJ, VeseyG, BellP, BissingerP, et al. (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14 : 147–160 doi:;10.1002/(SICI)1097-0061(19980130)14 : 2<147::AID-YEA207>3.0.CO;2-L
62. BoyleEI, WengS, GollubJ, JinH, BotsteinD, et al. (2004) GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20 : 3710–3715 doi:10.1093/bioinformatics/bth456
Štítky
Genetika Reprodukčná medicína
Článek Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis inČlánek Fission Yeast Shelterin Regulates DNA Polymerases and Rad3 Kinase to Limit Telomere Extension
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 11- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Molecular Recognition by a Polymorphic Cell Surface Receptor Governs Cooperative Behaviors in Bacteria
- The Light Skin Allele of in South Asians and Europeans Shares Identity by Descent
- Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in
- Retrotransposon Silencing During Embryogenesis: Cuts in LINE
- Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination
- Parallel Evolution of Chordate Regulatory Code for Development
- A Genetic Approach to the Recruitment of PRC2 at the Locus
- Deletion of the Murine Cytochrome P450 Locus by Fused BAC-Mediated Recombination Identifies a Role for in the Pulmonary Vascular Response to Hypoxia
- Elevated Mutagenesis Does Not Explain the Increased Frequency of Antibiotic Resistant Mutants in Starved Aging Colonies
- Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing
- Interplay between Active Chromatin Marks and RNA-Directed DNA Methylation in
- Recombinogenic Conditions Influence Partner Choice in Spontaneous Mitotic Recombination
- Crosstalk between NSL Histone Acetyltransferase and MLL/SET Complexes: NSL Complex Functions in Promoting Histone H3K4 Di-Methylation Activity by MLL/SET Complexes
- A New Role for the GARP Complex in MicroRNA-Mediated Gene Regulation
- RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells
- Loss of DNMT1o Disrupts Imprinted X Chromosome Inactivation and Accentuates Placental Defects in Females
- Inhibition of the Smc5/6 Complex during Meiosis Perturbs Joint Molecule Formation and Resolution without Significantly Changing Crossover or Non-crossover Levels
- Disruption of Lipid Metabolism Genes Causes Tissue Overgrowth Associated with Altered Developmental Signaling
- Translation Initiation Factors eIF3 and HCR1 Control Translation Termination and Stop Codon Read-Through in Yeast Cells
- Recruitment of TREX to the Transcription Machinery by Its Direct Binding to the Phospho-CTD of RNA Polymerase II
- MYB97, MYB101 and MYB120 Function as Male Factors That Control Pollen Tube-Synergid Interaction in Fertilization
- Oct4 Is Required ∼E7.5 for Proliferation in the Primitive Streak
- Contrasted Patterns of Crossover and Non-crossover at Meiotic Recombination Hotspots
- Transposable Prophage Mu Is Organized as a Stable Chromosomal Domain of
- Ash1l Methylates Lys36 of Histone H3 Independently of Transcriptional Elongation to Counteract Polycomb Silencing
- Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects
- Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi
- Decoding a Signature-Based Model of Transcription Cofactor Recruitment Dictated by Cardinal Cis-Regulatory Elements in Proximal Promoter Regions
- Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair
- Fission Yeast Shelterin Regulates DNA Polymerases and Rad3 Kinase to Limit Telomere Extension
- Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in
- Activin-Like Kinase 2 Functions in Peri-implantation Uterine Signaling in Mice and Humans
- Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data
- Recurrent Tissue-Specific mtDNA Mutations Are Common in Humans
- The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Testis
- The Maternal-to-Zygotic Transition Targets Actin to Promote Robustness during Morphogenesis
- Reconstructing the Population Genetic History of the Caribbean
- and Are Required for Growth under Iron-Limiting Conditions
- Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment
- Neuron-Specific Feeding RNAi in and Its Use in a Screen for Essential Genes Required for GABA Neuron Function
- RNA∶DNA Hybrids Initiate Quasi-Palindrome-Associated Mutations in Highly Transcribed Yeast DNA
- Mouse BAZ1A (ACF1) Is Dispensable for Double-Strand Break Repair but Is Essential for Averting Improper Gene Expression during Spermatogenesis
- Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Neurofibromatosis-1 Growth Deficiency
- DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis
- Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Neurofibromatosis-1 Growth Deficiency
- The Light Skin Allele of in South Asians and Europeans Shares Identity by Descent
- RNA∶DNA Hybrids Initiate Quasi-Palindrome-Associated Mutations in Highly Transcribed Yeast DNA
- Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy