#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Characterization of Transcriptome Remodeling during Cambium Formation Identifies and As Opposing Regulators of Secondary Growth


Cell-to-cell communication is crucial for the development of multicellular organisms, especially during the generation of new tissues and organs. Secondary growth—the lateral expansion of plant growth axes—is a highly dynamic process that depends on the activity of the cambium. The cambium is a stem cell–like tissue whose activity is responsible for wood production and, thus, for the establishment of extended shoot and root systems. Attempts to study cambium regulation at the molecular level have been hampered by the limitations of performing genetic analyses in trees and by the difficulty of accessing this tissue in model systems such as Arabidopsis thaliana. Here, we describe the roles of two receptor-like kinases, REDUCED IN LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), as opposing regulators of cambium activity. Their identification was facilitated by a novel in vitro system in which cambium formation is induced in isolated Arabidopsis stem fragments. By combining this system with laser capture microdissection, we characterized transcriptome remodeling in a tissue- and stage-specific manner and identified series of genes induced during different phases of cambium formation. In summary, we provide a means for investigating cambium regulation in unprecedented depth and present two signaling components that control a process responsible for the accumulation of a large proportion of terrestrial biomass.


Vyšlo v časopise: Characterization of Transcriptome Remodeling during Cambium Formation Identifies and As Opposing Regulators of Secondary Growth. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001312
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001312

Souhrn

Cell-to-cell communication is crucial for the development of multicellular organisms, especially during the generation of new tissues and organs. Secondary growth—the lateral expansion of plant growth axes—is a highly dynamic process that depends on the activity of the cambium. The cambium is a stem cell–like tissue whose activity is responsible for wood production and, thus, for the establishment of extended shoot and root systems. Attempts to study cambium regulation at the molecular level have been hampered by the limitations of performing genetic analyses in trees and by the difficulty of accessing this tissue in model systems such as Arabidopsis thaliana. Here, we describe the roles of two receptor-like kinases, REDUCED IN LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), as opposing regulators of cambium activity. Their identification was facilitated by a novel in vitro system in which cambium formation is induced in isolated Arabidopsis stem fragments. By combining this system with laser capture microdissection, we characterized transcriptome remodeling in a tissue- and stage-specific manner and identified series of genes induced during different phases of cambium formation. In summary, we provide a means for investigating cambium regulation in unprecedented depth and present two signaling components that control a process responsible for the accumulation of a large proportion of terrestrial biomass.


Zdroje

1. AttaR

LaurensL

Boucheron-DubuissonE

Guivarc'hA

CarneroE

2009 Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57 626 644

2. CheP

LallS

NettletonD

HowellSH

2006 Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141 620 637

3. GrebT

ClarenzO

SchäferE

MüllerD

HerreroR

2003 Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17 1175 1187

4. SehrEM

AgustiJ

LehnerR

FarmerEE

SchwarzM

2010 Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63 811 822

5. DuJ

GrooverA

2010 Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol 52 17 27

6. FukakiH

Wysocka-DillerJ

KatoT

FujisawaH

BenfeyPN

1998 Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14 425 430

7. AltamuraMM

PossentiM

MatteucciA

BaimaS

RubertiI

2001 Development of the vascular system in the inflorescence stem of Arabidopsis. New Phyt 151 381 389

8. SauerM

BallaJ

LuschnigC

WisniewskaJ

ReinohlV

2006 Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20 2902 2911

9. EloA

ImmanenJ

NieminenK

HelariuttaY

2009 Stem cell function during plant vascular development. Semin Cell Dev Biol 20 1097 1106

10. SchraderJ

MoyleR

BhaleraoR

HertzbergM

LundebergJ

2004 Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40 173 187

11. LittleCHA

MacDonaldJE

OlssonO

2002 Involvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation in Arabidopsis thaliana inflorescence stems. International Journal of Plant Sciences 163 519 529

12. SchraderJ

BabaK

MayST

PalmeK

BennettM

2003 Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci U S A 100 10096 10101

13. DonnerTJ

SherrI

ScarpellaE

2009 Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136 3235 3246

14. ScarpellaE

MarcosD

FrimlJ

BerlethT

2006 Control of leaf vascular patterning by polar auxin transport. Genes Dev 20 1015 1027

15. WenzelCL

SchuetzM

YuQ

MattssonJ

2007 Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49 387 398

16. SachsT

1981 The control of the patterned differentiation of vascular tissues. Adv Bot Res 9 151 162

17. EhltingJ

MattheusN

AeschlimanDS

LiE

HambergerB

2005 Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42 618 640

18. KoJH

HanKH

2004 Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55 433 453

19. KoJH

HanKH

ParkS

YangJ

2004 Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135 1069 1083

20. OhS

ParkS

HanKH

2003 Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54 2709 2722

21. ZhaoC

CraigJC

PetzoldHE

DickermanAW

BeersEP

2005 The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138 803 818

22. SchraderJ

NilssonJ

MellerowiczE

BerglundA

NilssonP

2004 A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16 2278 2292

23. GrooverAT

MansfieldSD

DiFazioSP

DupperG

FontanaJR

2006 The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol 61 917 932

24. FisherK

TurnerS

2007 PXY, a Receptor-like Kinase Essential for Maintaining Polarity during Plant Vascular-Tissue Development. Curr Biol 17 1061 1066

25. HirakawaY

ShinoharaH

KondoY

InoueA

NakanomyoI

2008 Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci U S A 105 15208 15213

26. EtchellsJP

TurnerSR

2010 The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137 767 774

27. De SmetI

VossU

JurgensG

BeeckmanT

2009 Receptor-like kinases shape the plant. Nat Cell Biol 11 1166 1173

28. JiJ

StrableJ

ShimizuR

KoenigD

SinhaN

2009 WOX4 promotes procambial development. Plant Physiol 152 1346 1356

29. HirakawaY

KondoY

FukudaH

2010 TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22 2618 2629

30. MayerKF

SchoofH

HaeckerA

LenhardM

JurgensG

1998 Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95 805 815

31. SarkarAK

LuijtenM

MiyashimaS

LenhardM

HashimotoT

2007 Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446 811 814

32. KerkNM

CeseraniT

TaustaSL

SussexIM

NelsonTM

2003 Laser capture microdissection of cells from plant tissues. Plant Physiol 132 27 35

33. AgustiJ

MereloP

CercosM

TadeoFR

TalonM

2009 Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9 127

34. JiaoY

TaustaSL

GandotraN

SunN

LiuT

2009 A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41 258 263

35. ZhangX

MadiS

BorsukL

NettletonD

ElshireRJ

2007 Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLoS Genet 3 e101 doi:10.1371/journal.pgen.0030101

36. BradySM

OrlandoDA

LeeJY

WangJY

KochJ

2007 A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318 801 806

37. YadavRK

GirkeT

PasalaS

XieM

ReddyGV

2009 Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106 4941 4946

38. ChatfieldSP

StirnbergP

FordeBG

LeyserO

2000 The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24 159 169

39. FrimlJ

VietenA

SauerM

WeijersD

SchwarzH

2003 Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426 147 153

40. BonkeM

ThitamadeeS

MähönenAP

HauserMT

HelariuttaY

2003 APL regulates vascular tissue identity in Arabidopsis. Nature 426 181 186

41. TruernitE

BaubyH

DubreucqB

GrandjeanO

RunionsJ

2008 High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis. Plant Cell 20 1494 1503

42. NilssonJ

KarlbergA

AnttiH

Lopez-VernazaM

MellerowiczE

2008 Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20 843 855

43. ScarpellaE

FrancisP

BerlethT

2004 Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131 3445 3455

44. DevicM

2008 The importance of being essential: EMBRYO-DEFECTIVE genes in Arabidopsis. C R Biol 331 726 736

45. KwakSH

ShenR

SchiefelbeinJ

2005 Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307 1111 1113

46. GeorgeL

RomanowskySM

HarperJF

SharrockRA

2008 The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiol 146 716 728

47. LinPC

HwangSG

EndoA

OkamotoM

KoshibaT

2007 Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143 745 758

48. DongCH

RivarolaM

ResnickJS

MagginBD

ChangC

2008 Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53 275 286

49. ZhangJ

EloA

HelariuttaY

2010 Arabidopsis as a model for wood formation. Curr Opin Biotechnol Epub ahead of print

50. GrooverAT

2005 What genes make a tree a tree? Trends Plant Sci 10 210 214

51. QinY

LeydonAR

ManzielloA

PandeyR

MountD

2009 Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5 e1000621 doi:10.1371/journal.pgen.1000621

52. SauerM

FrimlJ

2008 In vitro culture of Arabidopsis embryos. Methods Mol Biol 427 71 76

53. SnowR

1935 Activation of cambial growth by pure hormones. New Phyt 34 347 360

54. BjörklundS

AnttiH

UddestrandI

MoritzT

SundbergB

2007 Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52 499 511

55. LauxT

MayerKF

BergerJ

JurgensG

1996 The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122 87 96

56. ShiuSH

KarlowskiWM

PanR

TzengYH

MayerKF

2004 Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16 1220 1234

57. StahlY

WinkRH

IngramGC

SimonR

2009 A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19 909 914

58. SchoofH

LenhardM

HaeckerA

MayerKF

JurgensG

2000 The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100 635 644

59. MelzerS

LensF

GennenJ

VannesteS

RohdeA

2008 Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics 40 1489 1492

60. KwakSH

Schiefelbein J 2008 A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis. Curr Biol 18 1949 1954

61. DeYoungBJ

BickleKL

SchrageKJ

MuskettP

PatelK

2006 The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45 1 16

62. ZhuY

WangY

LiR

SongX

WangQ

2010 Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61 223 233

63. GuoY

HanL

HymesM

DenverR

ClarkSE

2010 CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 23 889 900

64. BleckmannA

Weidtkamp-PetersS

SeidelCA

SimonR

2010 Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152 166 176

65. SolomonBD

2010 Biofuels and sustainability. Ann N Y Acad Sci 1185 119 134

66. GentlemanRC

CareyVJ

BatesDM

BolstadB

DettlingM

2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80

67. BarrettT

TroupDB

WilhiteSE

LedouxP

RudnevD

2009 NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Research 37 D885 890

68. LarkinMA

BlackshieldsG

BrownNP

ChennaR

McGettiganPA

2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948

69. SaitouN

NeiM

1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406 425

70. KimuraM

1983 The neutral Theory of Molecular Evolution. Cambridge Camb.Univ.Press 75

71. HwangI

ChenHC

SheenJ

2002 Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129 500 515

72. AkamaK

JunkerV

BeierH

2000 Identification of two catalytic subunits of tRNA splicing endonuclease from Arabidopsis thaliana. Gene 257 177 185

73. ZilbermanD

CaoX

JacobsenSE

2003 ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299 716 719

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#