#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Uncoupling of Satellite DNA and Centromeric Function in the Genus


In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.


Vyšlo v časopise: Uncoupling of Satellite DNA and Centromeric Function in the Genus. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000845
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000845

Souhrn

In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.


Zdroje

1. BrittenRJ

KohneDE

1968 Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161 529 540

2. SzybalskiW

1968 Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 12B 330 360

3. AllshireRC

KarpenGH

2008 Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9 923 937

4. VoullaireLE

SlaterHR

PetrovicV

ChooKH

1993 A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52 1153 1163

5. MarshallOJ

ChuehCA

LeeH

WongLH

ChooKH

2008 Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82 261 282

6. ChooKH

2000 Centromerization. Trends Cell Biol 10 182 188

7. BrownWR

XuZY

2009 The ‘kinetochore maintenance loop’: the mark of regulation? Bioessays 31 228 236

8. FerreriGC

LiscinskyDM

MackJA

EldridgeMD

O'NeillRJ

2005 Retention of latent centromeres in the mammalian genome. J Hered 96 217 224

9. KasaiF

GarciaC

ArrugaM

Ferguson-SmithMA

2003 Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa): evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102 326 330

10. MontefalconeG

TempestaS

RocchiM

ArchidiaconoN

1999 Centromere repositioning. Genome Res 9 1184 1188

11. VenturaM

ArchidiaconoN

RocchiM

2001 Centromere emergence in evolution. Genome Res 11 595 599

12. CarboneL

NergadzeSG

MagnaniE

MisceoD

CardoneMF

2006 Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87 777 782

13. VenturaM

AntonacciF

CardoneMF

StanyonR

D'AddabboP

2007 Evolutionary formation of new centromeres in macaque. Science 316 243 246

14. AmorDJ

ChooKH

2002 Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71 695 714

15. OakenfullEA

CleggJB

1998 Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes. J Mol Evol 47 772 783

16. RyderOA

EpelNC

BenirschkeK

1978 Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20 323 350

17. YangF

FuB

O'BrienPC

RobinsonTJ

RyderOA

2003 Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102 235 243

18. YangF

FuB

O'BrienPCM

NieW

RyderOA

2004 Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-specieschromosome painting: insight into the occasional fertility of mules. Chromosome Res 12 65 76

19. TrifonovVA

StanyonR

NesterenkoAI

FuB

PerelmanPL

2008 Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16 89 107

20. PirasFM

NergadzeSG

PolettoV

CeruttiF

RyderOA

2009 Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Cytogenet Genome Res 126 165 172

21. WadeCM

GiulottoE

SigurdssonS

ZoliM

GnerreS

2009 Genome sequence, comparative analysis and population genetics of the domestic horse (Equus caballus). Science 326 865 867

22. AnglanaM

BertoniL

GiulottoE

1996 Cloning of a polymorphic sequence from the nontranscribed spacer of horse rDNA. Mamm Genome 7 539 541

23. WijersER

ZijlstraC

LenstraJA

1993 Rapid evolution of horse satellite DNA. Genomics 18 113 117

24. SakagamiM

HirotaK

AwataT

YasueH

1994 Molecular cloning of an equine satellite-type DNA sequence and its chromosomal localization. Cytogenet Cell Genet 66 27 30

25. BroadTE

EdeAJ

ForrestJW

LewisPE

PhuaSH

1995a Families of tandemly repeated DNA elements from horse: cloning, nucleotide sequence, and organization. Genome 38 1285 1289

26. BroadTE

ForrestJW

LewisPE

PearcePD

PhuaSH

1995b Cloning of a DNA repeat element from horse: DNA sequence and chromosomal localization. Genome 38 1132 1138

27. MusilovaP

KubickovaS

ZrnovaE

HorinP

VahalaJ

2007 Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Research 15 807 813

28. WichmanHA

PayneCT

RyderOA

HamiltonMJ

MaltbieM

1991 Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 82 369 377

29. ChuehAC

NorthropEL

Brettingham-MooreKH

ChooKH

WongLH

2009 LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5 e1000345 doi:10.1371/journal.pgen.1000354

30. CaroneDM

LongoMS

FerreriGC

HallM

ShookN

2009 A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118(1) 113 125

31. MisceoD

CardoneMF

CarboneL

D'AddabboP

de JongPJ

2005 Evolutionary history of chromosome 20. Mol Biol Evol 22 360 366

32. SambrookJ

FritschEF

ManiatisT

1989 Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press. E. 3

33. NergadzeSG

MagnaniE

AttoliniC

BertoniL

AdelsonDL

2006 Assignment of the Equus caballus interleukin 8 gene (IL8) to chromosome 3q14.2/q14.3 by in situ hybridization. Cytogenet Genome Res 112 341B

34. SafferyR

IrvineDV

GriffithsB

KalitsisP

ChooKH

2000 Components of the human spindle checkpoint control mechanism localize specifically to the active centromere on dicentric chromosomes. Hum Genet 107 376 384

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#