Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Genome


Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control.


Vyšlo v časopise: Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Genome. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000846
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1000846

Souhrn

Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control.


Zdroje

1. KouzaridesT

2007 Chromatin modifications and their function. Cell 128 693 705

2. LiB

CareyM

WorkmanJL

2007 The role of chromatin during transcription. Cell 128 707 719

3. ClapierCR

CairnsBR

2009 The biology of chromatin remodelling complexes. Annu Rev Biochem 78 273 304

4. SuganumaT

WorkmanJL

2008 Crosstalk among histone modifications. Cell 135 604 607

5. LanctôtC

CheutinT

CremerM

CavalliG

CremerT

2007 Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8 104 115

6. BrancoMR

PomboA

2006 Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4 e138 doi:10.1371/journal.pbio.0040138

7. BrancoMR

PomboA

2007 Chromosome organization: new facts, new models. Trends Cell Biol 17 127 134

8. CremerT

CremerM

DietzelS

MüllerS

SoloveiI

2006 Chromosome territories - a functional nuclear landscape. Curr Opin Cell Biol 18 307 316

9. ShaklaiS

AmariglioN

RechaviG

SimonAJ

2007 Gene silencing at the nuclear periphery. FEBS J 274 1383 1392

10. DechatT

PfleghaarK

SenguptaK

ShimiT

ShumakerDK

2008 Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22 832 853

11. GuelenL

PagieL

BrassetE

MeulemanW

FazaMB

2008 Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453 948 951

12. PickersgillH

KalverdaB

de WitE

TalhoutW

FornerodM

2006 Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38 1005 1014

13. BricknerJH

WalterP

2004 Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2 e342 doi:10.1371/journal.pbio.0020342

14. BrownCR

SilverPA

2007 Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17 100 106

15. CabalGG

GenovesioA

Rodriguez-NavarroS

ZimmerC

GadalO

2006 SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441 770 773

16. TaddeiA

Van HouweG

HedigerF

KalckV

CubizollesF

2006 Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441 774 778

17. TranEJ

WenteSR

2006 Dynamic nuclear pore complexes: life on the edge. Cell 125 1041 1053

18. CasolariJM

BrownCR

KomiliS

WestJ

HieronymusH

2004 Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117 427 439

19. ChambeyronS

BickmoreWA

2004 Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18 1119 1130

20. FerreiraJ

PaolellaG

RamosC

LamondAI

1997 Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139 1597 1610

21. GilbertDM

2001 Nuclear position leaves its mark on replication timing. J Cell Biol 152 F11 F15

22. ZinkD

AmaralMD

EnglmannA

LangS

ClarkeLA

2004 Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166 815 825

23. AkhtarA

GasserSM

2007 The nuclear envelope and transcriptional control. Nat Rev Genet 8 507 517

24. GoldmanRD

ShumakerDK

ErdosMR

ErikssonM

GoldmanAE

2004 Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101 8963 8968

25. PaddyMR

BelmontAS

SaumweberH

AgardDA

SedatJW

1990 Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Cell 62 89 106

26. BrownCR

KennedyCJ

DelmarVA

ForbesDJ

SilverPA

2008 Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22 627 639

27. MendjanS

TaipaleM

KindJ

HolzH

GebhardtP

2006 Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21 811 823

28. LucchesiJC

KellyWG

PanningB

2005 Chromatin remodeling in dosage compensation. Annu Rev Genet 39 615 651

29. StraubT

BeckerPB

2007 Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8 47 57

30. IyerVR

HorakCE

ScafeCS

BotsteinD

SnyderM

2001 Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409 533 538

31. RenB

RobertF

WyrickJJ

AparicioO

JenningsEG

2000 Genome-wide location and function of DNA binding proteins. Science 290 2306 2309

32. KindJ

VaquerizasJM

GebhardtP

GentzelM

LuscombeNM

2008 Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133 813 828

33. Farnham

PJ

2009 Insights from genomic profiling of transcription factors. Nat Rev Genet 10 605 616

34. HubbellE

LiuWM

MeiR

2002 Robust estimators for expression analysis. Bioinformatics 18 1585 1592

35. MuseGW

GilchristDA

NechaevS

ShahR

ParkerJS

2007 RNA polymerase is poised for activation across the genome. Nat Genet 39 1507 1511

36. SchwartzYB

KahnTG

NixDA

LiXY

BourgonR

2006 Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38 700 705

37. RabutG

DoyeV

EllenbergJ

2004 Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6 1114 1121

38. SutherlandH

BickmoreWA

2009 Transcription factories: gene expression in unions? Nat Rev Genet 10 457 466

39. OsborneCS

ChakalovaL

BrownKE

CarterD

HortonA

2004 Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36 1065 1071

40. SimonisM

KlousP

SplinterE

MoshkinY

WillemsenR

2006 Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38 1348 1354

41. WuZ

IrizarryRA

GentlemanR

Martinez-MurilloF

SpencerF

2004 A model-based background adjustment for oligonucleotide expression arrays. Journal of the American Statistical Association 99 909 917

42. ParkinsonH

KapusheskyM

KolesnikovN

RusticiG

ShojatalabM

2009 ArrayExpress update - from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37 D868 D872

43. GentlemanRC

CareyVJ

BatesDM

BolstadB

DettlingM

2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80

44. IrizarryRA

BolstadBM

CollinF

CopeLM

HobbsB

2003 Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31 e15

45. FlicekP

AkenBL

BallesterB

BealK

BraginE

2010 Ensembl's 10th year. Nucleic Acids Res 38 D557 D562

46. SmythGK

2004 Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article3

47. BenjaminiY

HochbergY

1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57 289 300

48. LanzuoloC

RoureV

DekkerJ

BantigniesF

OrlandoV

2007 Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9 1167 1174

49. DoughertyR

KunzelmannKH

2007 Computing local thickness of 3D structures with ImageJ. Microscopy and Microanalysis 13 1678 1679

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz

Betablokátory a Ca antagonisté z jiného úhlu
Autori: prof. MUDr. Michal Vrablík, Ph.D., MUDr. Petr Janský

Autori: doc. MUDr. Petr Čáp, Ph.D.

Farmakoterapie akutní a chronické bolesti

Získaná hemofilie - Povědomí o nemoci a její diagnostika

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa