#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase ε


Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3′ to 5′exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system.


Vyšlo v časopise: Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase ε. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001209
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001209

Souhrn

Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3′ to 5′exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system.


Zdroje

1. BebenekK

KunkelTA

2004 Functions of DNA polymerases. Adv Protein Chem 69 137 165

2. GargP

BurgersPM

2005 DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40 115 128

3. JinYH

ObertR

BurgersPM

KunkelTA

ResnickMA

2001 The 3′–>5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98 5122 5127

4. JinYH

AyyagariR

ResnickMA

GordeninDA

BurgersPM

2003 Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol delta in the creation of a ligatable nick. J Biol Chem 278 1626 1633

5. GargP

StithCM

SabouriN

JohanssonE

BurgersPM

2004 Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18 2764 2773

6. Nick McElhinnySA

GordeninDA

StithCM

BurgersPM

KunkelTA

2008 Division of labor at the eukaryotic replication fork. Mol Cell 30 137 144

7. PursellZF

IsozI

LundstromEB

JohanssonE

KunkelTA

2007 Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317 127 130

8. ShcherbakovaPV

PavlovYI

1996 3′–>5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142 717 726

9. MorrisonA

SuginoA

1994 The 3′–>5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242 289 296

10. KarthikeyanR

VonarxEJ

StraffonAF

SimonM

FayeG

2000 Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 299 405 419

11. PavlovYI

FrahmC

Nick McElhinnySA

NiimiA

SuzukiM

2006 Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16 202 207

12. PavlovYI

ShcherbakovaPV

2010 DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685 45 53

13. KunkelTA

BurgersPM

2008 Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18 521 527

14. BurgersPM

2008 Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284 4041 4045

15. BudzowskaM

KanaarR

2009 Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53 17 31

16. LopesM

FoianiM

SogoJM

2006 Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21 15 27

17. KarrasGI

JentschS

2010 The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141 255 267

18. DaigakuY

DaviesAA

UlrichHD

2010 Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465 951 955

19. PomerantzRT

O'DonnellM

2008 The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456 762 766

20. ChilkovaO

JonssonBH

JohanssonE

2003 The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J Biol Chem 278 14082 14086

21. ArakiH

HamatakeRK

JohnstonLH

SuginoA

1991 DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88 4601 4605

22. FengW

Rodriguez-MenocalL

TolunG

D'UrsoG

2003 Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol Biol Cell 14 3427 3436

23. KestiT

McDonaldWH

YatesJRIII

WittenbergC

2004 Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J Biol Chem 279 14245 14255

24. JaszczurM

FlisK

RudzkaJ

KraszewskaJ

BuddME

2008 Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 178 633 647

25. JaszczurM

RudzkaJ

KraszewskaJ

FlisK

PolaczekP

2009 Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 669 27 35

26. ArakiH

HamatakeRK

MorrisonA

JohnsonAL

JohnstonLH

1991 Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res 19 4867 4872

27. NorthamMR

GargP

BaitinDM

BurgersPM

ShcherbakovaPV

2006 A novel function of DNA polymerase zeta regulated by PCNA. EMBO J 25 4316 4325

28. LiY

PursellZF

LinnS

2000 Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J Biol Chem 275 31554

29. TsubotaT

MakiS

KubotaH

SuginoA

MakiH

2003 Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8 873 888

30. IidaT

ArakiH

2004 Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24 217 227

31. TackettAJ

DilworthDJ

DaveyMJ

O'DonnellM

AitchisonJD

2005 Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 169 35 47

32. AsturiasFJ

CheungIK

SabouriN

ChilkovaO

WepploD

2006 Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13 35 43

33. ShcherbakovaPV

KunkelTA

1999 Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19 3177 3183

34. TranHT

KeenJD

KrickerM

ResnickMA

GordeninDA

1997 Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17 2859 2865

35. TranHT

GordeninDA

ResnickMA

1999 The 3′–>5′ exonucleases of DNA polymerases delta and epsilon and the 5′–>3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19 2000 2007

36. KirchnerJM

TranH

ResnickMA

2000 A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast. Genetics 155 1623 1632

37. DangW

KagalwalaMN

BartholomewB

2007 The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA. J Biol Chem 282 19418 19425

38. GangarajuVK

PrasadP

SrourA

KagalwalaMN

BartholomewB

2009 Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell 35 58 69

39. BebenekK

KunkelTA

1995 Analyzing fidelity of DNA polymerases. Methods Enzymol 262 217 232

40. ShcherbakovaPV

PavlovYI

ChilkovaO

RogozinIB

JohanssonE

2003 Unique error signature of the four-subunit yeast DNA polymerase epsilon. J Biol Chem 278 43770 43780

41. LawrenceCW

2004 Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 69 167 203

42. NorthamMR

RobinsonHA

KochenovaOV

ShcherbakovaPV

2009 Participation of DNA Polymerase {zeta} in Replication of Undamaged DNA in Saccharomyces cerevisiae. Genetics 184 27 42

43. ZhongX

GargP

StithCM

Nick McElhinnySA

KisslingGE

2006 The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34 4731 4742

44. PavlovYI

ShcherbakovaPV

KunkelTA

2001 In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 159 47 64

45. HarfeBD

Jinks-RobertsonS

2000 DNA mismatch repair and genetic instability. Annu Rev Genet 34 359 399

46. TranHT

DegtyarevaNP

GordeninDA

ResnickMA

1999 Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast. Genetics 152 47 59

47. HuangME

RioAG

GalibertMD

GalibertF

2002 Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 160 1409 1422

48. ChilkovaO

StenlundP

IsozI

StithCM

GrabowskiP

2007 The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35 6588 6597

49. KokoskaRJ

StefanovicL

DeMaiJ

PetesTD

2000 Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol 20 7490 7504

50. XieY

CounterC

AlaniE

1999 Characterization of the repeat-tract instability and mutator phenotypes conferred by a Tn3 insertion in RFC1, the large subunit of the yeast clamp loader. Genetics 151 499 509

51. NiimiA

LimsirichaikulS

YoshidaS

IwaiS

MasutaniC

2004 Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity. Mol Cell Biol 24 2734 2746

52. ChenC

UmezuK

KolodnerRD

1998 Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2 9 22

53. YangY

SterlingJ

StoriciF

ResnickMA

GordeninDA

2008 Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4 e1000264 doi:10.1371/journal.pgen.1000264

54. JinYH

GargP

StithCM

Al-RefaiH

SterlingJF

2005 The multiple biological roles of the 3′–>5′ exonuclease of Saccharomyces cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains. Mol Cell Biol 25 461 471

55. SwanMK

JohnsonRE

PrakashL

PrakashS

AggarwalAK

2009 Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16 979 986

56. GutierrezPJ

WangTS

2003 Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165 65 81

57. TranHT

GordeninDA

ResnickMA

1996 The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143 1579 1587

58. KunkelTA

ErieDA

2005 DNA mismatch repair. Annu Rev Biochem 74 681 710

59. MojasN

LopesM

JiricnyJ

2007 Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21 3342 3355

60. LehnerK

Jinks-RobertsonS

2009 The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc Natl Acad Sci U S A 106 5749 5754

61. DelbosF

AoufouchiS

FailiA

WeillJC

ReynaudCA

2007 DNA polymerase eta is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med 204 17 23

62. AlbertsonTM

OgawaM

BugniJM

HaysLE

ChenY

2009 DNA polymerase {varepsilon} and {delta} proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A

63. GoldsteinAL

McCuskerJH

1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15 1541 1553

64. PavlovYI

MakiS

MakiH

KunkelTA

2004 Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. BMC Biol 2 11

65. MorrisonA

BellJB

KunkelTA

SuginoA

1991 Eukaryotic DNA polymerase amino acid sequence required for 3′––5′ exonuclease activity. Proc Natl Acad Sci U S A 88 9473 9477

66. JinYH

ObertR

BurgersPM

KunkelTA

ResnickMA

2001 The 3′–>5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98 5122 5127

67. PavlovYI

MianIM

KunkelTA

2003 Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 13 744 748

68. ShcherbakovaPV

NoskovVN

PshenichnovMR

PavlovYI

1996 Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Mutat Res 369 33 44

69. AdamsWT

SkopekTR

1987 Statistical test for the comparison of samples from mutational spectra. J Mol Biol 194 391 396

70. Khromov-BorisovNN

RogozinIB

Pegas HenriquesJA

de SerresFJ

1999 Similarity pattern analysis in mutational distributions. Mutat Res 430 55 74

71. KokoskaRJ

McCullochSD

KunkelTA

2003 The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. J Biol Chem 278 50537 50545

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#