#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species (Green Peach Aphid)


Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.


Vyšlo v časopise: A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species (Green Peach Aphid). PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001216
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001216

Souhrn

Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.


Zdroje

1. WillT

TjallingiiWF

ThönnessenA

van BelAJ

2007 Molecular sabotage in plant defense by aphid saliva. Proc Natl Acad Sci U S A 104 10536 10541

2. BlackmanRL

EastopVF

2000 Aphids of the World's Crops - an identification and information guide England Wiley & Sons 466

3. PradoE

TjallingiiWF

2007 Behavioral evidence for local reduction of aphid-induced resistance. J Insect Sci 7 48

4. MartinB

CollarJL

TjallingiiWF

FereresA

1997 Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78 2701 2705

5. MuttiNS

LouisJ

PappanLK

PappanK

BegumK

2008 A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105 9965 9969

6. MuttiNS

ParkY

ReeseJC

ReeckGR

2006 RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect S 6 38

7. HarmelN

LétocartE

CherquiA

GiordanengoP

MazzucchelliG

2008 Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17 165 174

8. CarolanJC

FitzroyCI

AshtonPD

DouglasAE

WilkinsonTL

2009 The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9 2457 67

9. HogenhoutSA

Van der HoornRA

TerauchiR

KamounS

2009 Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22 115 122

10. KamounS

2007 Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10 358 365

11. Van der HoornRAL

KamounS

2008 From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20 2009 2017

12. JonesJD

DanglJL

2006 The plant immune system. Nature 444 323 329

13. KlinglerJ

CreasyR

GaoL

NairRM

CalixAS

2005 Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137 1445 1455

14. DogimontC

ChovelonV

TualS

BoissotN

RittenerV

2007 Molecular determinants of recognition specificity at the aphid and powdery mildew Vat/Pm-W resistance locus in melon. In XIII International Congress MPMI 2007, Sorrento (IT) 375

15. MilliganSB

BodeauJ

YaghoobiJ

KaloshianI

ZabelP

WilliamsonVM

1998 The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10 1307 1319

16. RossiM

GogginFL

MilliganSB

KaloshianI

UllmanDE

WilliamsonVM

1998 The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95 9750 9754

17. CasteelCL

WallingLL

PaineTD

2006 Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi 1.2 gene. Entomologia Experimentalis et Applicata 121 67 72

18. WallingLL

2008 Avoiding Effective Defenses: Strategies Employed by Phloem-Feeding Insects. Plant Phys 146 859 866

19. FrancisF

GuillonneauF

LeprinceP

De PauwE

HaubrugeE

2010 Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach. J Insect Physiol 56 575 585

20. StewartSA

HodgeS

IsmailN

MansfieldJW

FeysBJ

2009 The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant Microbe Interact 22 1645 1655

21. DanglJL

JonesJD

2001 Plant pathogens and integrated defence responses to infection. Nature 411 826 833

22. CunnacS

LindebergM

CollmerA

2009 Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12 53 60

23. HuitemaE

BosJI

TianM

WinJ

WaughME

KamounS

2004 Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 12 193 200

24. SchornackS

HuitemaE

CanoLM

BozkurtTO

OlivaR

2009 Ten things to know about oomycete effectors. Mol Plant Pathol 10 795 803

25. GuoM

TianF

WamboldtY

AlfanoJR

2009 The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact 22 1069 1080

26. BosJIB

KannegantiTD

YoungC

CakirC

HuitemaE

2006 The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48 165 176

27. BosJI

ArmstrongMR

GilroyEM

BoevinkPC

HeinI

2010 Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci U S A 107 9909 9914

28. TortoTA

LiS

StyerA

HuitemaE

TestaA

2003 EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13 1675 1685

29. KamounS

van WestP

VleeshouwersVGAA

de GrootKE

GoversF

1998 Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10 1413 1425

30. ShangY

LiX

CuiH

HeP

ThilmonyR

2006 RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci U S A 103 19200 19205

31. WangX

MitchumMG

GaoB

LiC

DiabH

2005 A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol 6 187 191

32. Gimenez-IbanezS

HannDR

NtoukakisV

PetutschnigE

LipkaV

RathjenJP

2009 AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19 423 429

33. HeweziT

BaumTJ

2010 Sequence divergences between cyst nematode effector protein orthologs may contribute to host specificity. Plant Signal Behav 5 187 189

34. RamseyJS

WilsonAC

de VosM

SunQ

TamborindeguyC

2007 Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics 8 423

35. BendtsenJD

NielsenH

von HeijneG

BrunakS

2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795

36. ChisholmST

CoakerG

DayB

StaskawiczBJ

2006 Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124 803 814

37. StahlEA

BishopJG

2000 Plant-pathogen arms races at the molecular level. Curr Opin Plant Biol 3 299 304

38. BarajasD

TenlladoF

Díaz-RuízJR

2006 Characterization of the recombinant forms arising from a Potato virus X chimeric virus infection under RNA silencing pressure. Mol Plant Microbe Interact 19 904 913

39. AzevedoC

BetsuyakuS

PeartJ

TakahashiA

NoëlL

2006 Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25 2007 2016

40. KannegantiTD

HuitemaE

CakirC

KamounS

2006 Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nepl-like protein PiNPP1.1 and INF1 elicitin. Mol Plant Microbe Interact 19 854 863

41. KepplerLD

BakerCJ

AtkinsonMM

1989 Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79 974 978

42. HannDR

RathjenJP

2007 Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49 607 618

43. JacobsSP

LigginsAP

ZhouJJ

PickettJA

JinX

FieldLM

2005 OS-D-like genes and their expression in aphids (Hemiptera : Aphididae). Insect Mol Biol 14 423 432

44. AngeliS

CeronF

ScaloniA

MontiM

MontefortiG

1999 Purification, structural characterisation, cloning and immunocytochemical localisation of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 292 745 754

45. TegoniM

CampanacciV

CambillauC

2004 Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29 257 264

46. WroblewskiT

CaldwellKS

PiskurewiczU

CavanaughKA

XuH

2009 Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol 150 1733 1749

47. AshfieldT

OngLE

NobutaK

SchneiderCM

InnesRW

2004 Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16 309 318

48. PegadarajuV

KnepperC

ReeseJ

ShahJ

2005 Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol 139 1927 1934

49. EitasTK

NimchukZL

DanglJL

2008 Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci U S A 105 6475 6480

50. BollerT

1995 Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46 189 214

51. de VosM

KimJH

JanderG

2007 Biochemistry and molecular biology of Arabidopsis-aphid interactions. BioEssays 28 871 883

52. TjallingiiWF

2006 Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57 739 745

53. MilesPW

1999 Aphid saliva. Biol Rev 74 41 85

54. DiezelC

von DahlCC

GaquerelE

BaldwinIT

2009 Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150 1576 1586

55. De VosM

JanderG

2009 Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32 1548 1560

56. PegadarajuV

LouisJ

SinghV

ReeseJC

BautorJ

2007 Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J 52 332 341

57. Nagnan-Le MeillourP

CainAH

Jacquin-JolyE

FrançoisMC

RamachandranS

2000 Chemosensory proteins from the proboscis of mamestra brassicae. Chem Senses 25 541 553

58. MontefortiG

AngeliS

PetacchiR

MinnocciA

2002 Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida: Phasmatidae). Arthropod Struct Dev 30 195 205

59. StathopoulosA

Van DrenthM

ErivesA

MarksteinM

LevineM

2002 Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111 687 701

60. NomuraA

KawasakiK

KuboT

NatoriS

1992 Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol 36 391 398

61. CalvelloM

BrandazzaA

NavarriniA

DaniFR

TurillazziS

2005 Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochem Mol Bio 35 297 307

62. MaleszkaR

StangeG

1997 Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene 202 39 43

63. ZhouJJ

HuangW

ZhangGA

PickettJA

FieldLM

2004 “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327 117 129

64. Jacquin-JolyE

VogtRG

FrancoisMC

Nagnan-Le MeillourP

2001 Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses 26 833 844

65. BriandL

SwasdipanN

NespoulousC

BézirardV

BlonF

2002 Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269 4586 4596

66. CalvoE

MansBJ

AndersenJF

RibeiroJM

2005 Function and evolution of a mosquito salivary protein family. J Biol Chem 281 1935 1942

67. MuttiNS

2006 Molecular studies of the salivary glands of the pea aphid, Acyrthosiphon pisum (Harris). PhD dissertation, Kansas State University, Kansas, USA

68. SambrookJ

RussellDW

2001 Molecular Cloning Cold Spring Harbor, New York, USA Cold Spring Harbor Laboratory Press

69. XiangC

HanP

LutzigerI

WangK

OliverDJ

1999 A mini binary vector series for plant transformation. Plant Mol Biol 40 711 717

70. Van der HoornRA

LaurentF

RothR

De WitPJ

2000 Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant-Microbe Interact 13 439 446

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#