#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

DSIF and RNA Polymerase II CTD Phosphorylation Coordinate the Recruitment of Rpd3S to Actively Transcribed Genes


Histone deacetylase Rpd3 is part of two distinct complexes:
the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP–Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain.


Vyšlo v časopise: DSIF and RNA Polymerase II CTD Phosphorylation Coordinate the Recruitment of Rpd3S to Actively Transcribed Genes. PLoS Genet 6(10): e32767. doi:10.1371/journal.pgen.1001173
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001173

Souhrn

Histone deacetylase Rpd3 is part of two distinct complexes:
the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP–Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain.


Zdroje

1. ShahbazianMD

GrunsteinM

2007 Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76 75 100

2. YangXJ

SetoE

2008 The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9 206 218

3. WangH

CareyLB

CaiY

WijnenH

FutcherB

2009 Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol 7 e1000189

4. HuangD

KaluarachchiS

Van DykD

FriesenH

SopkoR

2009 Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol 7 e1000188 doi:10.1371/journal.pbio.1000188

5. KremerSB

GrossDS

2009 The SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression. J Biol Chem

6. TakahataS

YuY

StillmanDJ

2009 The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 28 3378 3389

7. VeisJ

KlugH

KorandaM

AmmererG

2007 Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals. Mol Cell Biol 27 8364 8373

8. SharmaVM

TomarRS

DempseyAE

ReeseJC

2007 Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 27 3199 3210

9. InaiT

YukawaM

TsuchiyaE

2007 Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis. Mol Cell Biol 27 1254 1263

10. RobertF

PokholokDK

HannettNM

RinaldiNJ

ChandyM

2004 Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 16 199 209

11. De NadalE

ZapaterM

AlepuzPM

SumoyL

MasG

2004 The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427 370 374

12. MalloryMJ

StrichR

2003 Ume1p represses meiotic gene transcription in Saccharomyces cerevisiae through interaction with the histone deacetylase Rpd3p. J Biol Chem 278 44727 44734

13. WashburnBK

EspositoRE

2001 Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 21 2057 2069

14. KadoshD

StruhlK

1998 Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18 5121 5127

15. RundlettSE

CarmenAA

SukaN

TurnerBM

GrunsteinM

1998 Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392 831 835

16. KadoshD

StruhlK

1997 Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89 365 371

17. KurdistaniSK

RobyrD

TavazoieS

GrunsteinM

2002 Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31 248 54

18. FazzioTG

KooperbergC

GoldmarkJP

NealC

BasomR

2001 Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21 6450 6460

19. KadoshD

StruhlK

1998 Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12 797 805

20. ZhouJ

ZhouBO

LenzmeierBA

ZhouJQ

2009 Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 37 3699 3713

21. LoewithR

SmithJS

MeijerM

WilliamsTJ

BachmanN

2001 Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J Biol Chem 276 24068 24074

22. SunZW

HampseyM

1999 A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152 921 932

23. RundlettSE

CarmenAA

KobayashiR

BavykinS

TurnerBM

1996 HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93 14503 14508

24. VannierD

BalderesD

ShoreD

1996 Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144 1343 1353

25. SandmeierJJ

FrenchS

OsheimY

CheungWL

GalloCM

2002 RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J 21 4959 4968

26. SmithJS

CaputoE

BoekeJD

1999 A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 19 3184 3197

27. OakesML

SiddiqiI

FrenchSL

VuL

SatoM

2006 Role of histone deacetylase Rpd3 in regulating rRNA gene transcription and nucleolar structure in yeast. Mol Cell Biol 26 3889 3901

28. KnottSR

ViggianiCJ

TavareS

AparicioOM

2009 Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23 1077 1090

29. VogelauerM

RubbiL

LucasI

BrewerBJ

GrunsteinM

2002 Histone acetylation regulates the time of replication origin firing. Mol Cell 10 1223 1233

30. LambTM

MitchellAP

2001 Coupling of Saccharomyces cerevisiae early meiotic gene expression to DNA replication depends upon RPD3 and SIN3. Genetics 157 545 556

31. AparicioJG

ViggianiCJ

GibsonDG

AparicioOM

2004 The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24 4769 4780

32. MerkerJD

DominskaM

GreenwellPW

RinellaE

BouckDC

2008 The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae. DNA Repair (Amst) 7 1298 1308

33. DoraEG

RudinN

MartellJR

EspositoMS

RamirezRM

1999 RPD3 (REC3) mutations affect mitotic recombination in Saccharomyces cerevisiae. Curr Genet 35 68 76

34. CarrozzaMJ

LiB

FlorensL

SuganumaT

SwansonSK

2005 Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription. Cell 123 581 592

35. KeoghMC

KurdistaniSK

MorrisSA

AhnSH

PodolnyV

2005 Cotranscriptional set2 methylation of histone h3 lysine 36 recruits a repressive rpd3 complex. Cell 123 593 605

36. LickwarCR

RaoB

ShabalinAA

NobelAB

StrahlBD

2009 The Set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency. PLoS One 4 e4886 doi:10.1371/journal.pone.0004886

37. LiB

GogolM

CareyM

PattendenSG

SeidelC

2007 Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21 1422 1430

38. JoshiAA

StruhlK

2005 Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20 971 978

39. LeeJS

ShilatifardA

2007 A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res 618 130 134

40. BiswasD

TakahataS

StillmanDJ

2008 Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S). Mol Cell Biol 28 4445 4458

41. RobyrD

SukaY

XenariosI

KurdistaniS

WangA

2002 Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109 437 446

42. QuanTK

HartzogGA

2010 Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 184 321 334

43. WadaT

TakagiT

YamaguchiY

FerdousA

ImaiT

1998 DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12 343 356

44. PriceDH

2008 Poised polymerases: on your mark…get set…go! Mol Cell 30 7 10

45. SaundersA

CoreLJ

LisJT

2006 Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7 557 567

46. SimsRJIII

BelotserkovskayaR

ReinbergD

2004 Elongation by RNA polymerase II: the short and long of it. Genes Dev 18 2437 2468

47. CuiY

DenisCL

2003 In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol Cell Biol 23 7887 7901

48. BucheliME

BuratowskiS

2005 Npl3 is an antagonist of mRNA 3′ end formation by RNA polymerase II. EMBO J 24 2150 2160

49. KaplanCD

HollandMJ

WinstonF

2005 Interaction between transcription elongation factors and mRNA 3′-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem 280 913 922

50. LindstromDL

SquazzoSL

MusterN

BurckinTA

WachterKC

2003 Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23 1368 1378

51. GovindCK

QiuH

GinsburgDS

RuanC

HofmeyerK

2010 Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39 234 246

52. QiuH

HuC

HinnebuschAG

2009 Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33 752 762

53. ChuY

SuttonA

SternglanzR

PrelichG

2006 The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol Cell Biol 26 3029 3038

54. PeterlinBM

PriceDH

2006 Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23 297 305

55. WoodA

SchneiderJ

DoverJ

JohnstonM

ShilatifardA

2005 The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol Cell 20 589 599

56. ZhouK

KuoWH

FillinghamJ

GreenblattJF

2009 Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci U S A

57. LiuY

WarfieldL

ZhangC

LuoJ

AllenJ

2009 Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29 4852 4863

58. KeoghMC

PodolnyV

BuratowskiS

2003 Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23 7005 7018

59. SunZW

AllisCD

2002 Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418 104 108

60. NgHH

XuRM

ZhangY

StruhlK

2002 Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277 34655 7

61. NakanishiS

LeeJS

GardnerKE

GardnerJM

TakahashiYH

2009 Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Biol 186 371 377

62. BerrettaJ

MorillonA

2009 Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep 10 973 982

63. CollinsSR

MillerKM

MaasNL

RoguevA

FillinghamJ

2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446 806 810

64. GavinAC

AloyP

GrandiP

KrauseR

BoescheM

2006 Proteome survey reveals modularity of the yeast cell machinery. Nature 440 631 636

65. KroganNJ

CagneyG

YuH

ZhongG

GuoX

2006 Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 637 643

66. AygunO

SvejstrupJ

LiuY

2008 A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc Natl Acad Sci U S A 105 8580 8584

67. LambertJP

MitchellL

RudnerA

BaetzK

FigeysD

2009 A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 8 870 882

68. LavoieSB

AlbertAL

HandaH

VincentM

BensaudeO

2001 The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 312 675 685

69. Arevalo-RodriguezM

CardenasME

WuX

HanesSD

HeitmanJ

2000 Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J 19 3739 3749

70. WadaT

TakagiT

YamaguchiY

WatanabeD

HandaH

1998 Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J 17 7395 7403

71. LindstromDL

HartzogGA

2001 Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics 159 487 497

72. ViladevallL

St AmourCV

RosebrockA

SchneiderS

ZhangC

2009 TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol Cell 33 738 751

73. QiuH

HuC

WongCM

HinnebuschAG

2006 The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol Cell Biol 26 3135 3148

74. RenB

RobertF

WyrickJJ

AparicioO

JenningsEG

2000 Genome-wide location and function of DNA binding proteins. Science 290 2306 2309

75. HoganGJ

LeeCK

LiebJD

2006 Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2 e158 doi:10.1371/journal.pgen.0020158

76. EisenMB

SpellmanPT

BrownPO

BotsteinD

1998 Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 14863 8

77. SaldanhaAJ

2004 Java Treeview–extensible visualization of microarray data. Bioinformatics 20 3246 3248

78. RufiangeA

JacquesPE

BhatW

RobertF

NouraniA

2007 Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27 393 405

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#