#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana


Background:
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is a zoonotic virus transmitted by Ixodid ticks and causes Crimean-Congo hemorrhagic fever (CCHF) disease in humans with up to 50 % mortality rate.

Methods:
Freshly slaughtered livestock at the Kumasi abattoir in the Ashanti Region of Ghana were examined for the presence of ticks once a month over a 6-month period from May to November 2011. The ticks were grouped into pools by species, sex, and animal source. CCHFV was detected in the ticks using reverse transcription PCR. Blood samples were collected from enrolled abattoir workers at initiation, and from those who reported fever in a preceding 30-day period during monthly visits 2–5 months after initiation. Six months after initiation, all participants who provided baseline samples were invited to provide blood samples. Serology was performed using enzyme linked immunosorbent assay (ELISA). Demographic and epidemiological data was also obtained from enrolled participants using a structured questionnaire.

Results:
Of 428 freshly slaughtered animals comprising 130 sheep, 149 cattle, and 149 goats examined, 144 ticks belonging to the genera Ambylomma, Hyalomma and Boophilus were identified from 57 (13.3 %): 52 (34.9 %), 4 (3.1 %) and 1 (0.7 %) cattle, sheep and goat respectively. Of 97 tick pools tested, 5 pools comprising 1 pool of Hyalomma excavatum and 4 pools of Ambylomma variegatum, collected from cattle, were positive for CCHFV. Of 188 human serum samples collected from 108 abattoir workers, 7 (3.7 %) samples from 6 persons were anti-CCHF IgG positive with one of them also being CCHF IgM positive. The seroprevalence of CCHFV identified in this study was 5.7 %.

Conclusions:
This study detected human exposure to CCHF virus in slaughterhouse workers and also identified the CCHF virus in proven vectors (ticks) of Crimean Congo hemorrhagic fever in Ghana. The CCHFV was detected only in ticks collected from cattle, one of the livestock known to play a role in the amplification of the CCHF virus.

Keywords:
Crimean-congo hemorrhagic fever virus, Crimean-congo hemorrhagic fever, Seroprevalence, Ticks, Ambylomma, Hyalomma, Boophilus, Livestock, Abattoir, Ghana


Autoři: R. Akuffo 1,3,6*;  J. A. M. Brandful 3;  A. Zayed 1;  A. Adjei 4;  N. Watany 1;  N. T. Fahmy 1;  R. Hughes 1;  B. Doman 1;  S. V. Voegborlo 1;  D. Aziati 3;  D. Pratt 3;  J. A. Awuni 5;  N. Adams 1;  E. Dueger 1,2
Působiště autorů: U. S Naval Medical Research Unit No. , Cairo, Egypt. 1;  Centers for Disease Control and Prevention, Atlanta, GA, USA. 2;  Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana. 3;  University of Ghana, Accra, Ghana. 4;  Veterinary Services of Ghana, Accra, Ghana. 5;  Present Address: NAMRU-3, PSC 452, P. O Box 5000, FPO, AE 09835-99983A Imtidad Ramses Street. Adjacent to Abbassia Fever Hospital, Abbassia, Cairo, Egypt. 6
Vyšlo v časopise: BMC Infectious diseases 2016, 16:324
Kategorie: Research article
prolekare.web.journal.doi_sk: https://doi.org/10.1186/s12879-016-1660-6

© 2016 The Author(s).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1660-6

Souhrn

Background:
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is a zoonotic virus transmitted by Ixodid ticks and causes Crimean-Congo hemorrhagic fever (CCHF) disease in humans with up to 50 % mortality rate.

Methods:
Freshly slaughtered livestock at the Kumasi abattoir in the Ashanti Region of Ghana were examined for the presence of ticks once a month over a 6-month period from May to November 2011. The ticks were grouped into pools by species, sex, and animal source. CCHFV was detected in the ticks using reverse transcription PCR. Blood samples were collected from enrolled abattoir workers at initiation, and from those who reported fever in a preceding 30-day period during monthly visits 2–5 months after initiation. Six months after initiation, all participants who provided baseline samples were invited to provide blood samples. Serology was performed using enzyme linked immunosorbent assay (ELISA). Demographic and epidemiological data was also obtained from enrolled participants using a structured questionnaire.

Results:
Of 428 freshly slaughtered animals comprising 130 sheep, 149 cattle, and 149 goats examined, 144 ticks belonging to the genera Ambylomma, Hyalomma and Boophilus were identified from 57 (13.3 %): 52 (34.9 %), 4 (3.1 %) and 1 (0.7 %) cattle, sheep and goat respectively. Of 97 tick pools tested, 5 pools comprising 1 pool of Hyalomma excavatum and 4 pools of Ambylomma variegatum, collected from cattle, were positive for CCHFV. Of 188 human serum samples collected from 108 abattoir workers, 7 (3.7 %) samples from 6 persons were anti-CCHF IgG positive with one of them also being CCHF IgM positive. The seroprevalence of CCHFV identified in this study was 5.7 %.

Conclusions:
This study detected human exposure to CCHF virus in slaughterhouse workers and also identified the CCHF virus in proven vectors (ticks) of Crimean Congo hemorrhagic fever in Ghana. The CCHFV was detected only in ticks collected from cattle, one of the livestock known to play a role in the amplification of the CCHF virus.

Keywords:
Crimean-congo hemorrhagic fever virus, Crimean-congo hemorrhagic fever, Seroprevalence, Ticks, Ambylomma, Hyalomma, Boophilus, Livestock, Abattoir, Ghana


Zdroje

1. Gonzalez JP, Cornet JP, Wilson ML, Camicas JL. Crimean-Congo haemorrhagic fever virus replication in adult Hyalomma truncatum and Amblyomma variegatum ticks. Res Virol. 1991;142:483–488.

2. Chinikar S et al. Serological evaluation of Crimean-Congo hemorrhagic fever in humans with high-risk professions living in enzootic regions of Isfahan province of Iran and genetic analysis of circulating strains. Vector-Borne Zoonotic Dis. 2012;12:733–8.

3. Hoogstraal H. Review article: the epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and africa. J Med Entomol. 1979;15:307–417.

4. Shepherd AJ, Swanepoel R, Cornel AJ, Mathee O. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg. 1989;40:326–31.

5. Chisholm K et al. Crimean-Congo hemorrhagic fever virus in ticks from imported livestock. Egypt Emerg Infect Dis J. 2012;18:181.

6. Camicas J et al. Ecology of ticks as potential vectors of Crimean-Congo hemorrhagic fever virus in Senegal: epidemiological implications. Arch Virol. 1990;1:303–22.

7. Saluzzo JF et al. Isolation of Crimean-Congo haemorrhagic fever and rift valley fever viruses in upper Volta. Lancet. 2015;323:1179.

8. Nemes Z, et al. Human Crimean-Congo Hemorrhagic Fever, Sénégal. Emerg Infect Dis. 2004;10:1881–1882.

9. Appannanavar SB, Mishra B. An update on Crimean Congo hemorrhagic fever. J Glob Infect Dis. 2011;3:285–92.

10. Lwande OW et al. Seroprevalence of Crimean Congo hemorrhagic fever virus in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2012;12:727–32.

11. Sisman A. Epidemiologic features and risk factors of Crimean^|^ndash;congo hemorrhagic fever in Samsun Province, Turkey. J Epidemiol. 2013;23:95–102.

12. Ansari H et al. Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: a 13-year experience. J Infect Dev Ctries. 2014;8:749–57.

13. Kamboj A, Pathak H. Crimean-Congo hemorrhagic fever: a comprehensive review. Vet World. 2013;6:812–7.

14. Zavitsanou A, Babatsikou F, Koutis C. Crimean Congo hemorrhagic fever: an emerging tick-borne disease. Heal Sci J. 2009;3:10–8.

15. Fajs L et al. Prevalence of Crimean-Congo hemorrhagic fever virus in healthy population, livestock and ticks in Kosovo. PLoS One. 2014;9:e110982.

16. Drosten C et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, rift valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:2323–30.

17. Crowder CD et al. Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe. PLoS One. 2010;5:1–9.

18. Garrison AR et al. Development of a TaqMan minor groove binding protein assay for the detection and quantification of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2007;77:514–20.

19. Stachurski F, Lancelot R. Footbath acaricide treatment to control cattle infestation by the tick Amblyomma variegatum. Med Vet Entomol. 2006;20:402–12.

20. Leblebicioglu H et al. International journal of infectious diseases consensus report : preventive measures for Crimean-Congo hemorrhagic fever during Eid-al-adha festival. Int J Infect Dis. 2015;38:9–15.

Štítky
Infekčné lekárstvo
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#