#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Obesity accelerates ageing, especially the cardiovascular system


Authors: Ján Murín
Authors‘ workplace: I. interná klinika LF UK a UNB, Nemocnica Staré Mesto, Bratislava
Published in: Diab Obez 2025; 25(2): 116-124
Category: Reviews

Overview

There exists an obesity pandemic, which is coupled with an increasing ageing population and both are able to exacerbate the burden of cardiovascular diseases. The clinical and experimental evidence underscores a potential connection between obesity and ageing in the pathogenesis of various cardiovascular disorders. There are some data that weight reduction not only effectively reduces major cardiovascular events in elderly individuals, but weight reduction is also able to extend life-years of these people with or without obesity. This review evalu­ates the interplay between obesity and ageing from molecular mechanisms to whole organ function within the cardiovascular system. By comparatively analyzing their characteristic features, shared molecular and cell biological signatures, between obesity and ageing, are unveiled. It was found that obesity accelerates cardiovascular ageing. The review also elaborates on how emerging metabolic interventions targeting obesity might protect from cardiovascular diseases largely through antagonizing key molecular mechanisms of the ageing process itself. In sum, this review aims to provide valuable insight into how understanding of these interconnected processes could guide the development of novel and effective cardiovascular therapeutics for a growing aged population with a concerning obesity problem.

Keywords:

Senescence – inflammation – cardiovascular disease – SGLT2 inhibitor – autophagy – mitochondrial dysfunction – caloric restriction – GLP-1 receptor agonist


Sources

Kompletný zoznam citovanej literatúry je prístupný z <www.diaslovakia.sk/casopisy>

United Nations. World Population Ageing 2023: Challenges and Opportunities of Population Ageing in the Least Developed Countries. Department of Economic and Social Affairs 2023. Dostupné z WWW: <https://desapublications.un.org/publications/world-population-ageing-2023-challenges-and-opportunities-population-ageing-least>.

[NCD Risk Factor Collaboration]. World trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adoslescents and adults. Lancet 2024; 403(10431): 1027–1050. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(23)02750–2>.

Koskinas KC, van Craenenbroeck EM, Antoniades C et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur Heart J 2024; 45(38): 4063–4098. Dostupné z DOI: <http://dx.doi.org/<10.1093/eurheartj/ehae508>.

Khan SS, Ning H, Wilkins JT et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 2018; 3(4): 280–287. Dostupné z DOI: <http://dx.doi.org/10.1001/jamacardio.2018.0022>.

Niemann B, Chen Y, Teschner M et al. Obesity induces signs of premature cardiac ageing in younger patients: the role of mitochondria. J Am Coll Cardiol 2011; 57(5): 577–585. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2010.09.040>.

Feng T, Vegard M, Strand LB et al. Weight and weight change and risk of atrial fibrillation: the HUNT study. Eur Heart J 2019; 40(34): 2859–2866. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehz390>.

Tromp J, MacDonald MR, Tay WT et al. Heart failure with preserved ejection fraction in the young. Circulation 2018; 138(24): 2763–2773. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034720>.

Abdellatif M, Kroemer G. Heart failure with preserved ejection fraction: an age-related condition. J Mol Cell Cardiol 2022; 167 : 83–84. Dostupné z DOI: <http://dx.doi.org/10.1016/j.yjmcc.2022.03.008>.

Robertson J, Schaufelberger M, Lindgren M et al. Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation 2019; 140(2): 117–125. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.118.039132>.

Kivimäki M, Frank P, Pentti J et al. Obesity and risk of diseases associated with hallmarks of cellular ageing: a multicohort study. Lancet Healthy Longev 2024; 5(7): e454-e463. Dostupné z DOI: <http://dx.doi.org/10.1016/S2666–7568(24)00087–4>.

Dove A, Guo J, Marseglia A et al. Cardiometabolic multimorbidity and incident dementia: the Swedish twin registry. Eur Heart J 2023; 44(7): 573–582. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehac744>.

De Cabo R, Mattson MP. Effects of intermittent fasting on health, ageing, and disease. N Engl J Med 2019; 3812(6): 2541–2551. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMra1905136>.

Abdellatif M, Rainer PP, Sedej S et al. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20(11): 754–777. Dostupné z DOI: <http://dx.doi.org/10.1038/s41569–023–00881–3>.

Alpert MA, Lambert CR, Panayiotou H et al. Relation of duration of morbid obesity to left ventricular mass, systolic function and diastolic filling and effect of weight loss. Am J Cardiol 1995; 76 (16): 1194–1197. Dostupné z DOI: <http://dx.doi.org/10.1016/s0002–9149(99)80338–5>.

The Global Cardiovascular Risk Consortium. Global effect of modifiable risk factor on cardiovascular disease and mortality. N Engl J Med 2023; 389(14): 1273–1285. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa2206916>.

Zhou Z, Macpherson J, Gray SR et al. Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381 363 UK Biobank participants. Diabetologia 2021; 64(9): 1963–1972. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–021–05484–6>.

Poirier P, Giles TD, Bray GA et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity and Metabolism. Circulation 2006; 113(6): 898–918. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.106.171016>.

Alpert MA, Karthikeyan K, Abdullah O et al. Obesity and cardiac remodelling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis 2018; 61(2): 114–123. Dostupné z DOI: <http://dx.doi.org/10.1016/j.pcad.2018.07.012>.

Zhao S, Kusminski CM, Scherer PE. Adiponectin, leptin and cardiovascular disorders. Circ Res 2021; 128(1): 136–149. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.120.314458>.

Aurigemma GP, de Simone G, Fitzgibbons TP. Cardiac remodeling in obesity. Circ Cardiovasc Imaging 2013; 6(1): 142–152. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCIMAGING.111.964627>.

Russo C, Jin Z, Homma S et al. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol 2011; 57(12): 1368–1374. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2010.10.042>.

Serés L, López-Ayerbe J, Coll R et al. Cardiopulmonary function and exercise capacity in patients with morbid obesity. Rev Esp Cardiol 2003; 56(6): 594–600. Dostupné z DOI: <http://dx.doi.org/10.1016/s0300–8932(03)76921–8>.

Antelmi I, de Paula RS, Shinzato AR et al. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 2004; 93(3): 381–385. Dostupné z DOI: <http://dx.doi.org/10.1016/j.amjcard.2003.09.065>.

Chen HHL, Bhat A, Gan GCH et al. The impact of body mass index on cardiac structure and function in a cohort of obese patients without traditional cardiovascular risk factors. Int J Cardiol Cardiovasc Risk Prev 2023; 19 : 200211. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcrp.2023.200211>.

Sargsyan N, Chen JY, Aggarwal R et al. The effects of bariatric surgery on cardiac function: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48(2): 166–176. Dostupné z DOI: <http://dx.doi.org/10.1038/s41366–023–01412–3>.

Juonala M, Kähonen M, Laitinen et al. Effect of age and sex on carotid intima-media thickness, elasticity and brachial endothelial function in healthy adults: the cardiovascular risk in Young Finns Study. Eur Heart J 2008; 29(9): 1198–1206. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehm556>.

Van Guilder GP, Hoetzer GL, Dengel DR et al. Impaired endothelium –⁠ dependent vasodilation in normotensive and normoglycemic obese adult humans. J Cardiovasc Pharmacol 2006; 47(2): 310–313. Dostupné z DOI: <http://dx.doi.org/10.1097/01.fjc.0000205097.29946.d3>.

Zebekakis PE, Nawrot T, Thijs L et al. Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 2005; 23(10): 1839–1846. Dostupné z DOI: <http://dx.doi.org/10.1097/01.hjh.0000179511.93889.e9>.

Brown CD, Higgins M, Donato KA et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes Res 2000; 8(9): 605–619. Dostupné z DOI: <http://dx.doi.org/10.1038/oby.2000.79>.

Bagi Z, Feher A, Cassuto J. Microvascular responsiveness in obesity: implications for therapeutic intervention. Br J Pharmacol 2012; 165(3): 544–560. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1476–5381.2011.01606.x>.

Dorrance AM, Matin N, Pires PW. The effects of obesity on cerebral vasculature . Curr Vasc Pharmacol 2014; 12(3): 462–472. Dostupné z DOI: <http://dx.doi.org/10.2174/1570161112666140423222411>.

Ruperez C, Madeo F, de Cabo R et al. Obesity accelerates cardiovascular ageing. Eur Heart J 2025; 46(23): 2161–2185. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehaf216>.

Abdellatif M, Sedej S, Carmona-Gutierrez D et al. Autophagy in cardiovascular ageing. Circ Res 2018; 123(7): 803–824. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.118.312208>.

Sciarretta S, Zhai P, Shao D et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012; 125(9): 1134–1146. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.111.078212>.

Rupérez C, Lerin C, Ferrer-Curriu G et al. Autophagic control of cardiac steatosis through FGF21 in obesity-associated cardiomyopathy. Int J Cardiol 2018; 260 : 163–170. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijcard.2018.02.109>.

Tong M, Saito T, Zhai P et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 2019; 124(9): 1360–1371. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.118.314607>.

Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail 2020; 22(4): 618–628. Dostupné z DOI: <http://dx.doi.org/10.1002/ejhf.1732>.

Mainali N, Ayyadevara S, Ganne A et al. Protein homeostasis in the aged and diseased heart. J Cardiovasc Ageing 2023; 3(2): 16. Dostupné z DOI: <http://dx.doi.org/10.20517/jca.2023.4>.

Predmore JM, Wang P, Davis F et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circultion 2010; 121(8): 997–1004. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.109.904557>.

Birks EJ, Latif N, Enesa K et al. Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 2008; 79(3): 472–480. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvn083>.

Lemmer IL, Willemsen N, Hilal N et al. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 2021; 47 : 101169. Dostupné z DOI: <http://dx.doi.org/10.1016/j.molmet.2021.101169>.

Yang L, Licastro D, Cava E et al. Long-term calorie restriction enhances cellular quality-control processes in human skeletal muscle. Cell Rep 2016;14 (3): 422–428. Dostupné z DOI: <http://dx.doi.org/10.1016/j.celrep.2015.12.042>.

Madreiter -⁠ Sokolowski CT, Hiden U, Krstic J et al. Targeting organ-specific mitochondrial dysfunction to improve biological ageing. Pharmacol Ther 2024; 262 : 1087. Dostupné z DOI: <http://dx.doi.org/10. 10.1016/j.pharmthera.2024.108710>.

Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta 2016; 1861(10): 1525–1534. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bbalip.2016.03.020>.

Kizhakekuttu TJ, Wang J Dharmashankar K et al. Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 2012; 32(10): 2531–2539. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.112.256024>.

Schumacher B, Pothof J, Vijg J et al. The central role of DNA damage in the ageing process. Nature 2021; 592(10): 695–703. Dostupné z DOI: <http://dx.doi.org/10.1038/s41586–021–03307–7>.

Kim S, Parks CG, DeRoo LA et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev 2009; 18 (3): 816–820. Dostupné z DOI: <http://dx.doi.org/10.1158/1055–9965.EPI-08–0935>.

Barouch LA, Gao D, Chen L et al. Cardiac myocyte apoptosis is associated with increased DNA damageand decreased survival in murine models of obesity. Circ Res 2006; 98(1): 119–124. Dostupné z DOI: <http://dx.doi.org/10.1161/01.RES.0000199348.10580.1d>.

Chiaramonte A, Testi S, Pelosini C et al. Oxidative and DNA damage in obese patients undergoing bariatric surgery: a one-year follow-up study. Mutat Res 2023; 827 : 111827. Dostupné z DOI: <http://dx.doi.org/10.1016/j.mrfmmm.2023.111827>.

Usman M, Woloshynowych M, Britto JC et al. Obesity, oxidative DNA damage and Vitamin D as predictors of genomic instability in children and adolescents. Int J Obes (Lond) 2021; 45(9): 2095–2107. Dostupné z DOI: <http://dx.doi.org/10.1038/s41366–021–00879–2>.

Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 2019; 18(3): e12931. Dostupné z DOI: <http://dx.doi.org/10.1111/acel.12931>.

Spinelli R, Baboota RK, Gogg S et al. Increased cell senescence In human metabolic disorders. J Clin Invest 2023; 133(12): e169922. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI169922>.

Pini M, Czibik G, Sawaki D et al. Adipose tissue senescence is mediated by increased ATP content after a short-term high-fat diet exposure. Aging Cell 2021; 20 (8): e13421. Dostupné z DOI: <http://dx.doi.org/10.1111/acel.13421>.

Lee G, Kim YY, Jang H et al. SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab 2022; 34 (5): 702–718. e.5. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cmet.2022.03.010>.

Rouault C, Marcelin G, Adriouch S et al. Senescence-associated beta-galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia 2021; 64(1): 240–254. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–020–05307–0>.

Gevaert AB, Shakeri H, Leloup AJ et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an ageing mouse model. Circ Heart Fail 2017; 10(6): e003806. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003806>.

Abdellatif M, Schmid ST, Fuerlinger A et al. Anti-ageing interventions for the treatment of cardiovascular disease. Cardiovasc Res 2025; 121(10): 1524–1536. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvae177>.

de Oliveira Silva T, Lunardon G, Lino CA et al. Senescent cell depletion alleviates obesity-related metabolic and cardiac disorders. Mol Metab 2025; 91 : 102065. Dostupné z DOI: <http://dx.doi.org/10.1016/j.molmet.2024.102065>.

Hall JE, do Carmo JM, de Silva AA et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116 (6): 991–1006. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.116.305697>.

Boustany CM, Bharadway K, Daugherty A et al. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol 2004; 287(4): R943-R949. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpregu.00265.2004>.

Schuetten MTJ, Houben AJHM, de Leeuw PW et al. The link between adipose tissue renin-angiotensin-aldosterone system signalling and obesity-associated hypertension. Physiology (Bethesda) 2017; 32(3): 197–209. Dostupné z DOI: <http://dx.doi.org/10.1152/physiol.00037.2016>.

Yoon HE, Kim EN, Kim MY et al. Age-associated changes in the vascular renin-angiotensin system in mice. Oxid Med Cell Longev 2016; 2016 : 6731093. Dostupné z DOI: <http://dx.doi.org/10.1155/2016/6731093>.

Rivera P, Miranda C, Roldán N et al. Augmented transcripts of kidney injury markers and renin angiotensin system in urine samples of overweight young adults. Sci Rep 2020; 10(1): 21154. Dostupné z DOI: <http://dx.doi.org/10.1038/s41598–020–78382–3>.

Guo X, Asthana P, Gurung S et al. Regulation of age-associated insulin resistence by MT1-MMP-mediated cleavage of insulin receptor. Nat Commun 2022;13(1): 3749. Dostupné z DOI: <http://dx.doi.org/10.1038/s41467–022–31563–2>.

Junnila RK, List EO, Berryman DE et al. The GH/IGF1 axis in ageing and longevity. Nat Rev Endocrinol 2013; 9(6): 366–376. Dostupné z DOI: <http://dx.doi.org/10.1038/nrendo.2013.67>.

Maffei A, Cifelli G, Carnevale R et al. PI3Ky inhibition protects against diabetic cardiomyopathy in mice. Rev Esp Cardiol (Engl Ed) 2017; 70(1): 16–24. Dostupné z DOI: <http://dx.doi.org/10.1016/j.rec.2016.04.034>.

Abdellatif M, Trummer-Herbst V, HeberleAM et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation 2022; 145(22): 1853–1866. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.122.059863>.

Kubo H, Sawada S, Satoh M et al. Insulin-like growth factor 1 levels are associated with high comorbidity of metabolic disorders in obese subjects: a Japanese single-center retrospective-study. Sci Rep 2022; 12(1): 20130. Dostupné z DOI: <http://dx.doi.org/10.1038/s41598–022–23521–1>.

Guo CA, Guo S. Insulin receptor substrate signalling controls cardiac energy metabolism and heart failure. J Endocrinol 2017; 233(3): R131-R143. Dostupné z DOI: <http://dx.doi.org/10.1530/JOE-16–0679>.

Qi Z, Ding S. Obesity-associated sympathetic overactivity in children and adolescents: the role of catecholamine resistance in lipid metabolism. J Pediatr Endocrinol Metab 2016; 29(2): 113–125. Dostupné z DOI: <http://dx.doi.org/ 10.1515/jpem-2015–0182>.

Valentine JM, Ahmadian M, Keinan O et al. Beta3-adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest 2022; 132(2): e153357. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI153357>.

De Kloet AD, Krause EG, Kim D-H et al. The effect of angiotensin -converting enzyme inhibition using captopril on energy balance and glucose homeostasis. Endocrinology 2009; 150(9): 4114–4123. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2009–0065>.

Strong R, Miller RA, Cheng CJ et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell 2022; 21(12): e13724. Dostupné z DOI: <http://dx.doi.org/10.1111/acel.13724>.

Wilding JPH, Batterham RL, Calanna S et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021; 384(11): 989–1002. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa2032183>.

Lincoff AM, Brown-Frandsen K, Colhoun HM et al. [SELECT Trial Investigators]. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 2023; 389(24): 2221–2232. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa2307563>.

Liberale L, Badimon L, Montecucco L et al. Inflammation, aging and cardiovascular disease. JACC review topic of the week. J Am Coll Cardiol 2022; 79(8): 837–847. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2021.12.017>.

Ruparelia N, Chai JT, Fisher EA et al. Inflammatory processess in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017; 14(3): 133–144. Dostupné z DOI: <http://dx.doi.org/10.1038/nrcardio.2016.185>.

Badimon L, Bugiardini R, Cenko E et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation : obesity and heart disease. Eur Heart J 2017;38(25): 1951–1958. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehx181>.

Liberale L, Montecucco F, Tardif J-C et al. Inflammation-aging: the role of inflmmation in age-dependent cardiovascular disease. Eur Heart J 2020; 41(31): 2974–2982. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehz961>.

Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105(9): 1135–1143. Dostupné z DOI: <http://dx.doi.org/10.1161/hc0902.104353>.

Meier HCS, Mitchell C, Karadimas T et al. Systemic inflammation and biological aging in the Health and Retirement Study. Geroscience 2023; 45(6): 3257–3265. Dostupné z DOI: <http://dx.doi.org/10.1007/s11357–023–00880–9>.

Fuster JJ, Ouchi N, Gokce N et al. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res 2016; 118(11): 1786–1807. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCRESAHA.115.306885>.

Weisberg SP, McCann D, Desai M et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796–1808. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI19246>.

Hahn VS, Knutsdottir H, Luo X et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 2021; 143(2): 120–134. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050498>.

Sokolova M, Sjaastad I, Louwe MC et al. NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Front Immunol 2019; 10 : 1621. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2019.01621>.

Henry JA, Abdesselam I, Deal O et al. The effect of bariatric surgery type on cardiac reverse remodelling. Int J Obes (Lond) 2024; 48(6): 808–814. Dostupné z DOI: <http://dx.doi.org/10.1038/s41366–024–01474-x>.

Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol 2018; 71(20): 2360–2372. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2018.03.509>.

Powell-Wiley TM, Poirier P, Burke LE et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2021; 143(21): e984-e1010. Dostupné z DOI: <http://dx.doi.org/10.1161/CIR.0000000000000973>.

Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23(1): 56–73. Dostupné z DOI: <http://dx.doi.org/10.1038/s41580–021–00411–4>.

Shinmura K, Tamaki K, Sano M et al. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 2011; 50(1): 117–127. Dostupné z DOI: <http://dx.doi.org/10.1016/j.yjmcc.2010.10.018>.

Dengo AL, Dennis EA, Orr JS et al. Arterial destiffening with weight loss in overweight and obese middle-aged and older adults. Hypertension 2010; 55(4): 855–861. Dostupné z DOI: <http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147850>.

Normandin E, Houston DK, Nicklas BJ. Caloric restriction for treatment of geriatric obesity: do the benefits outweight the risk? Curr Nutr Rep 2015; 4(4): 143–155. Dostupné z DOI: <http://dx.doi.org/10.1007/s13668–015–0123–9>.

Kitzman DW, Brubaker P, Morgan T et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 2016; 315(1): 36–46. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2015.17346>.

Matsushima S, Sadoshima J. The role of sirtuins in cardic disease. Am J Physiol Heart Circ Physiol 2015; 309(9): H1375-H1389. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpheart.00053.2015>.

Massey RJ, Siddiqui MK, Pearson ER et al. Weight variability and cardiovascular outcomes: a systematic review and meta-analysis. Cardiovasc Diabetol 2023; 22(1): 5. Dostupné z DOI: <http://dx.doi.org/10.1186/s12933–022–01735-x>.

Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 2022; 146(18): 1383–1405. Dostupné z DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061732>.

Hoong CWS, Chua MWJ. SGLT2 inhibitors as calorie restriction mimetics: insights on longevity pathways and age-related diseases. Endocrinology 2021; 162(8): bqab079. Dostupné z DOI: <http://dx.doi.org/10.1210/endocr/bqab079>.

Mone P, Varzideh F, Jankauskas SS et al. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insight from frail hypertensive and diabetic patients. Hypertension 2022; 79(8): 1633–1643. Dostupné z DOI: <http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.19586>.

Cheong AJY, Teo YN, Teo YH et al. SGLT2 inhibitors on weight and body mass: a meta-analysis of 116 randomized-controlled trials. Obesity (Silver Spring) 2022; 30(1): 117–128. Dostupné z DOI: 10.1002/oby.23331>.

Youn YJ, Kim S, Jeong H-J et al. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: a systematic review and meta-analysis. Front Neuroendocrinol 2024; 73 : 101131. Dostupné z DOI: <http://dx.doi.org/10.1016/j.yfrne.2024.101131>.

Giugliano D, Longo M, Scappaticcio L et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. Cardiovasc Diabetol 2021; 20(1): 236–248. Dostupné z DOI: <http://dx.doi.org/10.1186/s12933–021–01430–3>.

Wadden TA, Bailey TS, Billings LK et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA 2021; 325(14): 1403–1413. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2021.1831>.

Jensterle M, Rizzo M, Haluzik M et al. Efficacy of GLP-1 RA approved for weight management in patients with or without diabetes: a narrative review. Adv Ther 2022; 39(6): 2452–2467. Dostupné z DOI: <http://dx.doi.org/10.1007/s12325–022–02153-x>.

Kreiner FF, von Scholten BJ, Kurtzhals P et al. Glucagon-like peptide 1 receptor agonists to expand the healthy lifespan: current and future potentials. Aging Cell 2023; 22(5): e13818. Dostupné z DOI: <http://dx.doi.org/10.1111/acel.13818>.

Withaar C, Meems LMG, Markousis-Mavrogenis G et al The effects of liraglutide and dapagliflozin on cardiac function and structure in multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 2021; 117(9): 2108–2124. Dostupné z DOI: <http://dx.doi.org/10.1093/cvr/cvaa256>.

Marso SP, Daniels GH, Brown-Frandsen et al. [LEADER Steering Committee; LEADER Trial Investigators]. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311–322. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1603827>.

Deanfield J, Verma S, Scirica BM et al. [SELECT Trial Investigators]. Semaglutide and cardiovascular outcomes in patients with obesity and prevalent heart failure: a prespecified analysis of the SELECT trial. Lancet 2024; 404(10454): 773–786. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(24)01498–3>.

Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 2023; 20(7): 463–474. Dostupné z DOI: <http://dx.doi.org/10.1038/s41569–023–00849–3>.

Monney M, Jornayvaz FR, Gariani K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. Diabetes Metab 2023; 49(5): Dostupné z DOI: <http://dx.doi.org/101470. 10.1016/j.diabet.2023.101470>.

Abdellatif M, Sedej S, Mroemer G. NAD+ metabolism in cardiac health, aging and disease. Circulation 2021; 144(22): 1795–1817. Dostupné z DOI: <http://dx.doi.org/10.1161CIRCULATIONAHA.121.056589>.

Abdellatif M, Trummer-Herbst V, Koser F et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med 2021; 13(580): eabd7064. Dostupné z DOI: <http://dx.doi.org/10.1126/scitranslmed.abd7064>.

Sjoestroem L. Review of the key results from the Swedish Obese Subjects (SOS) trial –⁠ a prospective controlled intervention study of bariatric surgery. J Intern Med 2013; 273(3): 219–234. Dostupné z DOI: <http://dx.doi.org/10.1111/joim.12012>.

Hohensinner PJ, Kaun C, Ebenbauer B et al. Reduction of premature aging markers after gastric bypass surgery in morbidly obese patients. Obes Surg 2018; 28(9): 2804–2810. Dostupné z DOI: <http://dx.doi.org/10.1007/s11695–018–3247–3>.

Labels
Diabetology Obesitology

Article was published in

Diabetes and obesity

Issue 2

2025 Issue 2
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#