Utilization of Artificial Intelligence Algorithms for the Diagnosis of Breast, Lung, and Prostate Cancer
Authors:
Gabriela Šebestová 1; Tomáš Klinger 1; Marián Švajdler jr. 2,3; Ondřej Daum 1,4; Tomáš Jirásek 1
Published in:
Čes.-slov. Patol., 61, 2025, No. 2, p. 70-90
Category:
Reviews Article
Overview
The study focuses on the utilization of artificial intelligence (AI) algorithms in the diagnosis of breast, lung, and prostate cancer. It describes the historical development of the digitalization of pathological processes, the implementation of artificial intelligence, and its current applications in pathology. The study emphasizes machine learning, deep learning, computer vision, and digital pathology, which contribute to the automation and refinement of diagnostics. Special attention is given to specific tools such as the uPath systems from Roche and IBEX Medical Analytics, which enable the analysis of histopathological images, tumor cell classification, and biomarker evaluation. The study also highlights the benefits of AI utilization, including increased diagnostic accuracy and efficiency in laboratory processes, while simultaneously addressing the challenges associated with its implementation, such as ethical and legal considerations, data protection, and liability for errors. The aim of this study is to provide a comprehensive overview of the potential applications of AI in digital pathology and its role in modern oncological diagnostics.
Keywords:
prostate cancer – lung cancer – artificial intelligence – breast cancer – AI Algorithms
Sources
- Park S, Parwani AV, Aller RD, et al. The history of pathology informatics: A global perspective. J Pathol Inform 2013; 4(1): 7.
- Pagni F, Bono F, Bella C Di, Faravelli A, Cappellini A. Virtual surgical pathology in underdeveloped countries: The zambia project. In: Archives of Pathology and Laboratory Medicine. Vol 135; 2011: 215–219.
- Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60–88.
- McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577: 89–94.
- Park S, Parwani AV, Aller RD, et al. The history of pathology informatics: A global perspective. J Pathol Inform 2013; 4: 7.
- Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J 2018; 16: 34–42.
- Pantanowitz L, Quiroga-Garza GM, Bien L, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit Heal 2020; 2(8): e407–e416.
- Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med 2019; 16(1): 1–22.
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115–118.
- Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15.
- Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 2019; 25: 1301–1309.
- Bejnordi BE, Veta M, Van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318: 2199–2210.
- Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform 2016; 7(1): 29.
- Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans Med Imaging 2016; 35: 1196–1206.
- Hanna MG, Ardon O, Reuter VE, Sirintrapun SJ, England C, Klimstra DS, Hameed MR. Integrating digital pathology into clinical practice. Mod Patho. 2022; 35(2): 152–164.
- Pantanowitz L, Hartman D, Qi Y, et al. Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses. Diagn Pathol 2020; 15.
- Al-Karawi D, Al-Zaidi S, Helael KA, et al. A Review of Artificial Intelligence in Breast Imaging. Tomography 2024; 10(5): 705–726.
- Eisemann N, Bunk S, Mukama T, et al. Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nat Med 2025 2025: 1–8.
- Soliman A, Li Z, Parwani AV. Artificial intelligence’s impact on breast cancer pathology: a literature review. Diagn Pathol 2024; 19(1): 1–18.
- Co M, Lau YCC, Qian YXY, et al. Artificial Intelligence in Histologic Diagnosis of Ductal Carcinoma In Situ. Mayo Clin Proc Digit Heal 2023; 1(3): 267–275.
- Lu MT, Raghu VK, Mayrhofer T, Aerts HJWL, Hoffmann U. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: Development and validation of a prediction model. Ann Intern Med 2020; 173: 704–713.
- The Lancet Oncology. Can artificial intelligence improve cancer care? Lancet Oncol 2023; 24: 577.
- Davri A, Birbas E, Kanavos T, Ntritsos G, Giannakeas N, Tzallas AT, Batistatou A. Deep Learning for Lung Cancer Diagnosis, Prognosis and Prediction Using Histological and Cytological Images: A Systematic Review. Cancers (Basel) 2023; 15(15).
- Cortellini A, Zampacorta C, De Tursi M, et al. A preliminary study on the diagnostic performance of the uPath PD-L1 (SP263) artificial intelligence (AI) algorithm in patients with NSCLC treated with PD-1/ PD-L1 checkpoint blockade. Pathol J Ital Soc Anat Pathol Diagnostic Cytopathol 2024; 116(4): 222–231.
- Čapoun O, Král M, Minárik I, Novák V, Sedláčková H. Karcinom prostaty Česká urologická společnost. Available at: https://www. cus.cz/pro-pacienty/diagnozy/karcinom-prostaty/. Accessed February 6, 2025.
- Saha A, Bosma JS, Twilt JJ, et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. Lancet Oncol 2024; 25(7): 879–887.
- Bulten W, Kartasalo K, Chen PHC,et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat Med 2022; 28(1): 154–163.
- WHO Classification of Tumours Editorial Board. Urinary and male genital tumours. Lyon (France): International Agency for Research on Cancer; 2022. (WHO Classification of Tumours Series, 5th ed; vol. 8).
- Cires DC, Giusti A, Gambardella LM. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. 2013: 411–418.
- Nasser M, Yusof UK. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics (Basel, Switzerland) 2023; 13.
- Chen M, Wang Y, Wang Q, et al. Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation. npj Digit Med 2024; 7(1): 1–10.
- Tran TQB, du Toit C, Padmanabhan S. Artificial intelligence in healthcare-the road to precision medicine. J Hosp Manag Heal Policy 2021; 5: 1–15.
- Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25: 24–29.
- Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol 2017; 2: 230–243.
- Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Futur Healthc J 2021; 8(2): e188–e194.
- Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care — Addressing Ethical Challenges. N Eng J Med 2018; 378: 981–983.
- Anishchenko MA, Gidenko I, Kaliman M, Polyvaniuk V, Demianchuk Y V. Artificial Intelligence in Medicine: Legal, Ethical and Social Aspects. Acta Bioeth 2023; 29(1): 63–72.
- Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 2016; 13-17: 1135–1144.
- Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf 2019; 28(3): 231–237.
Labels
Anatomical pathology Forensic medical examiner ToxicologyArticle was published in
Czecho-Slovak Pathology
2025 Issue 2
Most read in this issue
- První rozhovor s novým šéfredaktorem našeho časopisu
- Machine learning in digital pathology
- Umělá inteligence v patologii – pokračování
- Utilization of Artificial Intelligence Algorithms for the Diagnosis of Breast, Lung, and Prostate Cancer