Machine learning in digital pathology
Authors:
Tomáš Brázdil 1; Vít Musil 1; Karel Štěpka 1; Adam Kukučka 1; Rudolf Nenutil 2; Adam Bajger 1; Petr Holub 3
Authors‘ workplace:
Fakulta informatiky, Masarykova univerzita, Brno
1; Oddělení onkologické patologie, Masarykův onkologický ústav, Brno
2; Ústav výpočetní techniky, Masarykova univerzita, Brno
3
Published in:
Čes.-slov. Patol., 61, 2025, No. 2, p. 58-69
Category:
Reviews Article
Overview
With the advancing digitalization of pathology, the application of machine learning and artificial intelligence methods is becoming increasingly important. Research and development in this field are progressing rapidly, but the clinical implementation of learning systems still lags behind. The aim of this text is to provide an overview of the process of developing and deploying learning systems in digital pathology. We begin by describing the fundamental characteristics of data produced in digital pathology. Specifically, we discuss scanners and sample scanning, data storage and transmission, quality control, and preparation for processing by learning systems, with a particular focus on annotations. Our goal is to present current approaches to addressing technical challenges while also highlighting potential pitfalls in processing digital pathology data. In the first part of the text, we also outline existing software solutions for viewing scanned samples and implementing diagnostic procedures that incorporate learning systems. In the second part of the text, we describe common tasks in digital pathology and outline typical approaches to solving them. Here, we explain the necessary modifications to standard machine learning methods for processing large scans and discuss specific diagnostic applications. Finally, we provide a brief overview of the potential future development of learning systems in digital pathology. We illustrate the transition to large foundational models and introduce the topic of virtual staining of samples. We hope that this text will contribute to a better understanding of the rapidly evolving field of machine learning in digital pathology and, in turn, facilitate the faster adoption of learning-based methods in this domain.
Keywords:
artificial intelligence – machine learning – Image processing – Digital Pathology – Whole-slide images
Sources
- Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013; 45(10): 1113–1120. 738–749.
- Brázdil T, Gallo M, Nenutil R, Kubanda A, Toufar M, Holub P. Automated annotations of epithelial cells and stroma in hematoxylin– eosin ‐stained whole‐slide images using cytokeratin re‐staining. The Journal of Pathology CR 2022; 8(2): 129–142.
- Cucoranu IC, Parwani AV, Vepa S, Weinstein RS, Pantanowitz L. Digital pathology: A systematic evaluation of the patent landscape. Journal of Pathology Informatics 2014; 5(1): 16.
- Clunie DA. DICOM Format and Protocol Standardization—A Core Requirement for Digital Pathology Success. Toxicol Pathol. 2021; 49(4):
- Daniel C, Macary F, García Rojo M, Klossa J, Laurinavičius A, Beckwith BA, et al. Recent advances in standards for collaborative Digital Anatomic Pathology. Diagnostic Pathology 2011; 6(1): S17.
- Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: A vendor-neutral software foundation for digital pathology. Journal of Pathology Informatics 2013; 4(1): 27.
- The Open Microscopy Environment [Internet]. [cited 2025 Mar 1]. Available from: https://www.openmicroscopy.org/bio-formats/
- Fraggetta F, L’Imperio V, Ameisen D, et al. Best Practice Recommendations for the Implementation of a Digital Pathology Workflow in the Anatomic Pathology Laboratory by the European Society of Digital and Integrative 2167.
- Song AH, Jaume G, Williamson DFK, et al. Artificial intelligence for digital and computational pathology. Nat Rev Bioeng 2023; 1(12): 930–949.
- Pantanowitz L, Quiroga-Garza GM, Bien L, et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. The Lancet Digital Health 2020; 2(8): e407–416.
- Gallo M, Krajňanský V, Nenutil R, Holub P, Brázdil T. Shedding light on the black box of a neural network used to detect prostate cancer in whole slide images by occlusion-based explainability. New Biotechnology 2023; 78: 52–67.
- Wetteland R, Engan K, Eftestøl T, Kvikstad V, Janssen EAM. A Multiscale Approach for Whole-Slide Image Segmentation of five Tissue Classes in Urothelial Carcinoma Slides. Technol Cancer Res Treat 2020; 19: 1533033820946787.
- Matthews GA, McGenity C, Bansal D, Treanor D. Public evidence on AI products for digital pathology. npj Digit Med 2024; 7(1): 300.
- Bontempo G, Bolelli F, Porrello A, Calderara S, Ficarra E. A Graph-Based Multi-Scale Approach With Knowledge Distillation for WSI Classification. IEEE Trans Med Imaging 2024; 43(4): 1412–1421.
- Wang J, Mao Y, Guan N, Xue CJ. Advances in Multiple Instance Learning for Whole Slide Image Analysis: Techniques, Challenges, and Future Directions [Internet]. arXiv 2024 [cited 2025 Feb 27]. Available from: http://arxiv.org/ abs/2408.09476
- Ghaffari Laleh N, Muti HS, Loeffler CML, et al. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Medical Image Analysis 2022; 79: 102474.
- Aggarwal A, Bharadwaj S, Corredor G, Pathak T, Badve S, Madabhushi A. Artificial intelligence in digital pathology — time for a reality check. Nat Rev Clin Oncol [Internet]. 2025 Feb 11 [cited 2025 Feb 27]; Available from: https://www.nature.com/articles/ s41571-025-00991-6
- McGenity C, Clarke EL, Jennings C, et al. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. npj Digit Med 2024 4; 7(1): 114.
- Cheng J. Applications of Large Language Models in Pathology. Bioengineering. 2024; 11(4): 342.
- Perincheri S, Levi AW, Celli R, et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Modern Pathology 2021; 34(8): 1588–1595.
- Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. The Lancet Oncology 2020; 21(2): 222–232.
- Spratt DE, Tang S, Sun Y, et al. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Evidence [Internet]. 2023 Jul 25 [cited 2025 Feb 28];2(8). Available from: https://evidence.nejm.org/ doi/10.1056/EVIDoa2300023
- Wulczyn E, Steiner DF, Moran M, et al. Interpretable survival prediction for colorectal cancer using deep learning. npj Digit Med 2021; 4(1): 71.
- Wang X, Zhao J, Marostica E, et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024; 634(8035): 970–978.
- Krishnamurthy S, Jain P, Tripathy D, et al. Predicting Response of Triple-Negative Breast Cancer to Neoadjuvant Chemotherapy Using a Deep Convolutional Neural Network–Based Artificial Intelligence Tool. JCO Clinical Cancer Informatics 2023; (7): e2200181.
- Deng J, Dong W, Socher R, Li LJ, Kai Li, Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition [Internet]. Miami, FL: IEEE; 2009 [cited 2025 Mar 1]. p. 248–255. Available from: https://ieeexplore.ieee.org/document/5206848/
- Xu H, Usuyama N, Bagga J, et al. A whole-slide foundation model for digital pathology from real-world data. Nature 2024; 630(8015): 181–188.
- Zimmermann E, Vorontsov E, Viret J, et al. Virchow2: Scaling Self-Supervised Mixed Magnification Models in Pathology [Internet]. arXiv 2024 [cited 2025 Mar 1]. Available from: http://arxiv.org/abs/2408.00738
- Chen RJ, Ding T, Lu MY, et al. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30(3): 850–862.
- Bilal M, Aadam, Raza M, et al. Foundation Models in Computational Pathology: A Review of Challenges, Opportunities, and Impact [Internet]. arXiv; 2025 [cited 2025 Mar 1]. Available from: https://arxiv.org/ abs/2502.08333
- Oquab M, Darcet T, Moutakanni T, et al. DINOv2: Learning Robust Visual Features without Supervision [Internet]. arXiv; 2024 [cited 2025 Mar 1]. Available from: http://ar- xiv.org/abs/2304.07193
- Khan U, Koivukoski S, Valkonen M, Latonen L, Ruusuvuori P. The effect of neural network architecture on virtual H&E staining: Systematic assessment of histological feasibility. Patterns 2023; 4(5): 100725.
- Koivukoski S, Khan U, Ruusuvuori P, Latonen L. Unstained Tissue Imaging and Virtual Hematoxylin and Eosin Staining of Histologic Whole Slide Images. Laboratory Investigation 2023; 103(5): 100070.
- Rivenson Y, Wang H, Wei Z, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat Biomed Eng 2019; 3(6): 466–477.
- Weitz P, Valkonen M, Solorzano L, et al. The ACROBAT 2022 Challenge: Automatic Registration Of Breast Cancer Tissue. 2023 [cited 2025 Mar 1]; Available from: https://arxiv.org/ abs/2305.18033
- Latonen L, Koivukoski S, Khan U, Ruusuvuori P. Virtual staining for histology by deep learning. Trends in Biotechnology 2024; 42(9): 1177–1191.
- Salvi M, Michielli N, Salamone L, et al. Computational Synthesis of Histological Stains: A Step Toward Virtual Enhanced Digital Pathology. Int J Imaging Syst Tech 2024; 34(5): e23165.
- Tweel JED, Ecclestone BR, Boktor M, Simmons JAT, Fieguth P, Reza PH. Virtual Histology with Photon Absorption Remote Sensing using a Cycle-Consistent Generative Adversarial Network with Weakly Registered Pairs [Internet]. arXiv; 2023 [cited 2025 Mar 1]. Available from: https://arxiv.org/abs/2306.08583
- Honkamaa J, Khan U, Koivukoski S, et al. Deformation equivariant cross-modality image synthesis with paired non-aligned training data. Medical Image Analysis 2023; 90: 102940.
- Li Y, Pillar N, Li J, et al. Virtual histological staining of unlabeled autopsy tissue. Nat Commun 2024; 15(1): 1684.
- Yoshikawa AL, Omura T, Takahashi‐Kanemitsu A, Susaki EA. Blueprints from plane to space: outlook of next‐generation three‐ dimensional histopathology. Cancer Science 2024; 115(4): 1029–1038.
- Borowsky AD, Levenson RM, Gown AM, Morningstar T, Fleury TA, Henderson G, et al. A Pilot Validation Study Comparing Fluorescence-Imitating Brightfield Imaging, A Slide-Free Imaging Method, With Standard Formalin-Fixed, Paraffin-Embedded Hematoxylin-Eosin–Stained Tissue Section Histology for Primary Surgical Pathology Diagnosis. Archives of Pathology & Laboratory Medicine 2024; 148(3): 345–352.
- Fereidouni F, Morningstar T, Borowsky A, Levenson R. FIBI: a direct-to-digital microscopy approach for slide-free histology. In: Tomaszewski JE, Ward AD, editors. Medical Imaging 2022: Digital and Computational Pathology [Internet]. San Diego, United States: SPIE; 2022 [cited 2025 Mar 2]. p. 52. Available from: https://www.spiedigitallibrary.org/confe- rence-proceedings-of-spie/12039/2612748/ FIBI--a-direct-to-digital-microscopy-approach-for-slide/10.1117/12.2612748.full
- Liu JT, Chow SS, Colling R, Downes MR, Farré X, Humphrey P, et al. Engineering the future of 3D pathology. The Journal of Pathology CR 2024; 10(1): e347.
Labels
Anatomical pathology Forensic medical examiner ToxicologyArticle was published in
Czecho-Slovak Pathology
2025 Issue 2
Most read in this issue
- První rozhovor s novým šéfredaktorem našeho časopisu
- Machine learning in digital pathology
- Umělá inteligence v patologii – pokračování
- Utilization of Artificial Intelligence Algorithms for the Diagnosis of Breast, Lung, and Prostate Cancer