Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors


Autoři: Joe R. Delaney aff001;  Chandni B. Patel aff001;  Jaidev Bapat aff001;  Christian M. Jones aff004;  Maria Ramos-Zapatero aff001;  Katherine K. Ortell aff004;  Ralph Tanios aff004;  Mina Haghighiabyaneh aff001;  Joshua Axelrod aff001;  John W. DeStefano aff004;  Isabelle Tancioni aff001;  David D. Schlaepfer aff001;  Olivier Harismendy aff001;  Albert R. La Spada aff003;  Dwayne G. Stupack aff001
Působiště autorů: UC San Diego Moores Cancer Center, La Jolla, California, United States of America aff001;  Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America aff002;  Departments of Neurology, Neurobiology, and Cell Biology, and the Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, North Carolina, United States of America aff003;  Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America aff004;  Department of Pediatrics and Division of Biological Sciences, UC San Diego School of Medicine, La Jolla, California, United States of America aff005;  Division of Biomedical Informatics, Department of Medicine, UC San Diego School of Medicine, La Jolla, California, United States of America aff006
Vyšlo v časopise: Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors. PLoS Genet 16(1): e1008558. doi:10.1371/journal.pgen.1008558
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1008558

Souhrn

Autophagy, particularly with BECN1, has paradoxically been highlighted as tumor promoting in Ras-driven cancers, but potentially tumor suppressing in breast and ovarian cancers. However, studying the specific role of BECN1 at the genetic level is complicated due to its genomic proximity to BRCA1 on both human (chromosome 17) and murine (chromosome 11) genomes. In human breast and ovarian cancers, the monoallelic deletion of these genes is often co-occurring. To investigate the potential tumor suppressor roles of two of the most commonly deleted autophagy genes in ovarian cancer, BECN1 and MAP1LC3B were knocked-down in atypical (BECN1+/+ and MAP1LC3B+/+) ovarian cancer cells. Ultra-performance liquid chromatography mass-spectrometry metabolomics revealed reduced levels of acetyl-CoA which corresponded with elevated levels of glycerophospholipids and sphingolipids. Migration rates of ovarian cancer cells were increased upon autophagy gene knockdown. Genomic instability was increased, resulting in copy-number alteration patterns which mimicked high grade serous ovarian cancer. We further investigated the causal role of Becn1 haploinsufficiency for oncogenesis in a MISIIR SV40 large T antigen driven spontaneous ovarian cancer mouse model. Tumors were evident earlier among the Becn1+/- mice, and this correlated with an increase in copy-number alterations per chromosome in the Becn1+/- tumors. The results support monoallelic loss of BECN1 as permissive for tumor initiation and potentiating for genomic instability in ovarian cancer.

Klíčová slova:

Autophagic cell death – Genetic causes of cancer – Genetic networks – Chromosome structure and function – Mammalian genomics – Mouse models – Ovarian cancer – Tumor suppressor genes


Zdroje

1. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi: 10.1016/j.cell.2007.12.018 18191218; PubMed Central PMCID: PMC2696814.

2. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25(5):460–70. doi: 10.1101/gad.2016311 21317241; PubMed Central PMCID: PMC3049287.

3. Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 2014;4(8):914–27. doi: 10.1158/2159-8290.CD-14-0363 24875857; PubMed Central PMCID: PMC4125614.

4. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 2013;3(11):1272–85. doi: 10.1158/2159-8290.CD-13-0397 23965987; PubMed Central PMCID: PMC3823822.

5. Guo JY, Teng X, Laddha SV, Ma S, Van Nostrand SC, Yang Y, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 2016;30(15):1704–17. doi: 10.1101/gad.283416.116 27516533; PubMed Central PMCID: PMC5002976.

6. Liu EY, Xu N, O'Prey J, Lao LY, Joshi S, Long JS, et al. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci U S A. 2015;112(3):773–8. Epub 2015/01/09. doi: 10.1073/pnas.1409563112 25568088; PubMed Central PMCID: PMC4311830.

7. Qiang L, Zhao B, Shah P, Sample A, Yang S, He YY. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy. 2016;12(2):357–68. Epub 2015/11/14. doi: 10.1080/15548627.2015.1110667 26565512; PubMed Central PMCID: PMC4835978.

8. Hewitt G, Carroll B, Sarallah R, Correia-Melo C, Ogrodnik M, Nelson G, et al. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy. 2016;12(10):1917–30. Epub 2016/07/09. doi: 10.1080/15548627.2016.1210368 27391408; PubMed Central PMCID: PMC5391493.

9. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. Epub 2016/01/23. doi: 10.1080/15548627.2015.1100356 26799652; PubMed Central PMCID: PMC4835977.

10. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–20. doi: 10.1172/JCI20039 14638851; PubMed Central PMCID: PMC297002.

11. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82. doi: 10.1073/pnas.2436255100 14657337; PubMed Central PMCID: PMC299911.

12. Laddha SV, Ganesan S, Chan CS, White E. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 2014;12(4):485–90. doi: 10.1158/1541-7786.MCR-13-0614 24478461; PubMed Central PMCID: PMC3989371.

13. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD, Gao J, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531(7595):471–5. doi: 10.1038/nature17157 26982726; PubMed Central PMCID: PMC4836395.

14. Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, et al. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated with Estrogen Receptor-Negative Subtypes and Poor Prognosis. EBioMedicine. 2015;2(3):255–63. doi: 10.1016/j.ebiom.2015.01.008 25825707; PubMed Central PMCID: PMC4376376.

15. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–6. doi: 10.1038/45257 10604474.

16. Delaney JR, Patel CB, Willis KM, Haghighiabyaneh M, Axelrod J, Tancioni I, et al. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer. Nat Commun. 2017;8:14423. doi: 10.1038/ncomms14423 28198375.

17. Delaney JR, Patel C, McCabe KE, Lu D, Davis MA, Tancioni I, et al. A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer. Oncotarget. 2015;6(31):31104–18. doi: 10.18632/oncotarget.5093 26418751; PubMed Central PMCID: PMC4741591.

18. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med. 2016;22(1):105–13. Epub 2015/12/01. doi: 10.1038/nm.3984 26618723; PubMed Central PMCID: PMC4830693.

19. Raynaud F, Mina M, Tavernari D, Ciriello G. Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability. PLoS Genet. 2018;14(9):e1007669. Epub 2018/09/14. doi: 10.1371/journal.pgen.1007669 30212491; PubMed Central PMCID: PMC6155543.

20. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. Epub 2013/04/04. doi: 10.1126/scisignal.2004088 23550210; PubMed Central PMCID: PMC4160307.

21. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155(4):948–62. doi: 10.1016/j.cell.2013.10.011 24183448; PubMed Central PMCID: PMC3891052.

22. Sack LM, Davoli T, Li MZ, Li Y, Xu Q, Naxerova K, et al. Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns. Cell. 2018;173(2):499–514 e23. Epub 2018/03/27. doi: 10.1016/j.cell.2018.02.037 29576454; PubMed Central PMCID: PMC6643283.

23. Xu B, Lefringhouse J, Liu Z, West D, Baldwin LA, Ou C, et al. Inhibition of the integrin/FAK signaling axis and c-Myc synergistically disrupts ovarian cancer malignancy. Oncogenesis. 2017;6(1):e295. Epub 2017/01/31. doi: 10.1038/oncsis.2016.86 28134933; PubMed Central PMCID: PMC5294249.

24. Hernandez L, Kim MK, Lyle LT, Bunch KP, House CD, Ning F, et al. Characterization of ovarian cancer cell lines as in vivo models for preclinical studies. Gynecol Oncol. 2016;142(2):332–40. Epub 2016/05/29. doi: 10.1016/j.ygyno.2016.05.028 27235858; PubMed Central PMCID: PMC4961516.

25. Correa RJ, Valdes YR, Shepherd TG, DiMattia GE. Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res. 2015;8:52. doi: 10.1186/s13048-015-0182-y 26239434; PubMed Central PMCID: PMC4524172.

26. Dolce V, Cappello AR, Lappano R, Maggiolini M. Glycerophospholipid synthesis as a novel drug target against cancer. Curr Mol Pharmacol. 2011;4(3):167–75. Epub 2011/01/13. doi: 10.2174/1874467211104030167 21222647.

27. Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, et al. Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. Cell Rep. 2016;15(8):1660–72. Epub 2016/05/18. doi: 10.1016/j.celrep.2016.04.065 27184837; PubMed Central PMCID: PMC4880529.

28. Kenific CM, Wittmann T, Debnath J. Autophagy in adhesion and migration. J Cell Sci. 2016;129(20):3685–93. Epub 2016/09/28. doi: 10.1242/jcs.188490 27672021; PubMed Central PMCID: PMC5087656.

29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013 21376230.

30. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61. Epub 2004/03/09. doi: 10.1385/MB:26:3:249 15004294.

31. Watanabe Y, Honda S, Konishi A, Arakawa S, Murohashi M, Yamaguchi H, et al. Autophagy controls centrosome number by degrading Cep63. Nat Commun. 2016;7:13508. Epub 2016/11/22. doi: 10.1038/ncomms13508 27869116; PubMed Central PMCID: PMC5473638.

32. Foster JM, Oumie A, Togneri FS, Vasques FR, Hau D, Taylor M, et al. Cross-laboratory validation of the OncoScan(R) FFPE Assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics. 2015;8:5. doi: 10.1186/s12920-015-0079-z 25889064; PubMed Central PMCID: PMC4342810.

33. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557–72. doi: 10.1093/biostatistics/kxh008 15475419.

34. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 2007;21(11):1367–81. doi: 10.1101/gad.1545107 17510285; PubMed Central PMCID: PMC1877749.

35. Fremont S, Gerard A, Galloux M, Janvier K, Karess RE, Berlioz-Torrent C. Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep. 2013;14(4):364–72. doi: 10.1038/embor.2013.23 23478334; PubMed Central PMCID: PMC3615652.

36. Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, et al. Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells. Cell. 2016;164(4):644–55. doi: 10.1016/j.cell.2015.12.039 26871630; PubMed Central PMCID: PMC4752721.

37. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73. doi: 10.1038/ng1180 12808457.

38. Marks JR, Davidoff AM, Kerns BJ, Humphrey PA, Pence JC, Dodge RK, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res. 1991;51(11):2979–84. 2032235.

39. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. doi: 10.1038/nature10166 21720365; PubMed Central PMCID: PMC3163504.

40. Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz AM, et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015;12(2):e1001789. doi: 10.1371/journal.pmed.1001789 25710373; PubMed Central PMCID: PMC4339382.

41. Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol. 2001;11(1):15–23. doi: 10.1006/scbi.2000.0342 11243895.

42. Hensley H, Quinn BA, Wolf RL, Litwin SL, Mabuchi S, Williams SJ, et al. Magnetic resonance imaging for detection and determination of tumor volume in a genetically engineered mouse model of ovarian cancer. Cancer Biol Ther. 2007;6(11):1717–25. doi: 10.4161/cbt.6.11.4830 17986851.

43. Harter P, Hauke J, Heitz F, Reuss A, Kommoss S, Marme F, et al. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1). PLoS One. 2017;12(10):e0186043. Epub 2017/10/21. doi: 10.1371/journal.pone.0186043 29053726; PubMed Central PMCID: PMC5650145.

44. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–10. doi: 10.1038/nrc3262 22534666; PubMed Central PMCID: PMC3664381.

45. Silver DP, Livingston DM. Mechanisms of BRCA1 tumor suppression. Cancer Discov. 2012;2(8):679–84. doi: 10.1158/2159-8290.CD-12-0221 22843421; PubMed Central PMCID: PMC3437262.

46. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64. doi: 10.2353/ajpath.2010.100105 20651229; PubMed Central PMCID: PMC2928939.

47. Eckert MA, Pan S, Hernandez KM, Loth RM, Andrade J, Volchenboum SL, et al. Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube. Cancer Discov. 2016;6(12):1342–51. doi: 10.1158/2159-8290.CD-16-0607 27856443; PubMed Central PMCID: PMC5164915.

48. Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2(2):a001107. Epub 2010/02/26. doi: 10.1101/cshperspect.a001107 20182618; PubMed Central PMCID: PMC2828285.

49. Cole AJ, Dwight T, Gill AJ, Dickson KA, Zhu Y, Clarkson A, et al. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep. 2016;6:26191. Epub 2016/05/18. doi: 10.1038/srep26191 27189670; PubMed Central PMCID: PMC4870633.

50. Cicchini M, Chakrabarti R, Kongara S, Price S, Nahar R, Lozy F, et al. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy. 2014;10(11):2036–52. Epub 2014/12/09. doi: 10.4161/auto.34398 25483966; PubMed Central PMCID: PMC4502817.

51. Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49(6):856–65. doi: 10.1038/ng.3849 28436987.

52. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3–5. doi: 10.1089/rej.2005.8.3 15798367.

53. Jena NR. DNA damage by reactive species: Mechanisms, mutation and repair. J Biosci. 2012;37(3):503–17. doi: 10.1007/s12038-012-9218-2 22750987.

54. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466(7302):68–76. Epub 2010/06/22. doi: 10.1038/nature09204 20562859; PubMed Central PMCID: PMC2901998.

55. Koukourakis MI, Kalamida D, Giatromanolaki A, Zois CE, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS One. 2015;10(9):e0137675. Epub 2015/09/18. doi: 10.1371/journal.pone.0137675 26378792; PubMed Central PMCID: PMC4574774.

56. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 2016;30(12):3961–78. doi: 10.1096/fj.201600698R 27601442.

57. Zhang J. CNTools: Convert segment data into a region by sample matrix to allow for other high level computational analyses. 2017.

58. Lai DH, Gavin. HMMcopy: Copy number prediction with correction for GC and mappability bias for HTS data. 2016.

59. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD. A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res. 2012;22(6):993–1005. doi: 10.1101/gr.134395.111 22456607; PubMed Central PMCID: PMC3371707.

60. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31. Epub 2009/12/19. doi: 10.1007/s10549-009-0674-9 20020197.

61. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. Epub 2012/06/30. doi: 10.1038/nmeth.2019 22743772; PubMed Central PMCID: PMC3855844.

62. Ganapathy S, Muraleedharan A, Sathidevi PS, Chand P, Rajkumar RP. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis. Comput Methods Programs Biomed. 2016;133:143–54. Epub 2016/07/10. doi: 10.1016/j.cmpb.2016.05.020 27393806.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2020 Číslo 1

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

nový kurz
Autori: MUDr. Petr Výborný, CSc., FEBO

Autori: MUDr. Jiří Horažďovský, Ph.D

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autori: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autori: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autori: MUDr. Nina Benáková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa