#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

splicing defect in dogs with lethal acrodermatitis


Lethal acrodermatitis (LAD) is an autosomal recessive hereditary disease in dogs. It is characterized by poor growth, immune deficiency and characteristic skin lesions of the paws and of the face. We mapped the LAD locus to a ~1.11 Mb segment on canine chromosome 14. Whole genome sequence data of an LAD affected dog and 191 controls revealed a candidate causative variant in the MKLN1 gene, encoding muskelin 1. The identified variant, a single nucleotide substitution, MKLN1:c.400+3A>C, altered the 5’-splice site at the beginning of intron 4. We experimentally confirmed that this variant leads to complete skipping of exon 4 in the MKLN1 mRNA in skin. Various cellular functions have been postulated for muskelin 1 including roles in intracellular transport processes, cell morphology, cell spreading, and cell adhesion. Our data from dogs reveal a novel in vivo role for muskelin 1 that is related to the immune system and skin. MKLN1 thus represents a novel candidate gene for human patients with unsolved acrodermatitis and/or immune deficiency phenotypes. LAD affected dogs may serve as models to gain more insights into the function of muskelin 1.


Vyšlo v časopise: splicing defect in dogs with lethal acrodermatitis. PLoS Genet 14(3): e32767. doi:10.1371/journal.pgen.1007264
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1007264

Souhrn

Lethal acrodermatitis (LAD) is an autosomal recessive hereditary disease in dogs. It is characterized by poor growth, immune deficiency and characteristic skin lesions of the paws and of the face. We mapped the LAD locus to a ~1.11 Mb segment on canine chromosome 14. Whole genome sequence data of an LAD affected dog and 191 controls revealed a candidate causative variant in the MKLN1 gene, encoding muskelin 1. The identified variant, a single nucleotide substitution, MKLN1:c.400+3A>C, altered the 5’-splice site at the beginning of intron 4. We experimentally confirmed that this variant leads to complete skipping of exon 4 in the MKLN1 mRNA in skin. Various cellular functions have been postulated for muskelin 1 including roles in intracellular transport processes, cell morphology, cell spreading, and cell adhesion. Our data from dogs reveal a novel in vivo role for muskelin 1 that is related to the immune system and skin. MKLN1 thus represents a novel candidate gene for human patients with unsolved acrodermatitis and/or immune deficiency phenotypes. LAD affected dogs may serve as models to gain more insights into the function of muskelin 1.


Zdroje

1. Moynahan EJ (1974) Acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet 2: 399–400. 4136854

2. Moynahan EJ (1982) The Lancet: Acrodermatitis Enteropathica: A Lethal Inherited Human Zinc-Deficiency Disorder. Nutr Rev 40: 84–86. 7050775

3. Lakdawala N, Grant-Kels JM (2015) Acrodermatitis enteropathica and other nutritional diseases of the folds (intertriginous areas). Clin Dermatol 33: 414–419. doi: 10.1016/j.clindermatol.2015.04.002 26051055

4. Küry S, Dréno B, Bézieau S, Giraudet S, Kharfi M, Kamoun R, et al. (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31: 239–240. doi: 10.1038/ng913 12068297

5. Yuzbasiyan-Gurkan V, Bartlett E (2006) Identification of a unique splice site variant in SLC39A4 in bovine hereditary zinc deficiency, lethal trait A46: An animal model of acrodermatitis enteropathica. Genomics 88: 521–526. doi: 10.1016/j.ygeno.2006.03.018 16714095

6. Jezyk PF, Haskins ME, MacKay-Smith WE, Patterson DF (1986) Lethal acrodermatitis in bull terriers. J Am Vet Med Assoc 188: 833–839. 3710872

7. McEwan NA (1990) Lethal acrodermatitis of bull terriers. Vet Rec 127: 95.

8. McEwan NA, McNeil PE, Thompson H, McCandlish IA (2000) Diagnostic features, confirmation and disease progression in 28 cases of lethal acrodermatitis of bull terriers. J Small Anim Pract 41: 501–507. 11105789

9. McEwan NA (2001) Malassezia and Candida infections in bull terriers with lethal acrodermatitis. J Small Anim Pract 42: 291–297. 11440398

10. McEwan NA, Huang HP, Mellor DJ (2003) Immunoglobulin levels in Bull terriers suffering from lethal acrodermatitis. Vet Immunol Immunopathol 96: 235–238. 14592736

11. Uchida Y, Moon-Fanelli AA, Dodman NH, Clegg MS, Keen CL (1997) Serum concentrations of zinc and copper in bull terriers with lethal acrodermatitis and tail-chasing behavior. Am J Vet Res 58: 808–810. 9256960

12. Grider A, Mouat MF, Mauldin EA, Casal ML (2007) Analysis of the liver soluble proteome from bull terriers affected with inherited lethal acrodermatitis. Mol Genet Metab 92: 249–257. doi: 10.1016/j.ymgme.2007.07.003 17693109

13. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucl Acids Res 34: 3955–3967. doi: 10.1093/nar/gkl556 16914448

14. Ravi Lab SpliceRack, Motif Frequency, available from: http://katahdin.mssm.edu/splice/viewsplicemotifgraphform.cgi?database = spliceNew

15. Martoni E, Urciuolo A, Sabatelli P, Fabris M, Bovolenta M, Neri M, et al. (2009) Identification and characterization of novel collagen VI non-canonical splicing mutations causing Ullrich congenital muscular dystrophy. Hum Mutat 30: E662–E672. doi: 10.1002/humu.21022 19309692

16. Kawarai T, Montecchiani C, Miyamoto R, Gaudiello F, Caltagirone C, Izumi Y, et al. (2017) Spastic paraplegia type 4: A novel SPAST splice site donor mutation and expansion of the phenotype variability. J Neurol Sci 380: 92–97. doi: 10.1016/j.jns.2017.07.011 28870597

17. Koppolu AA, Madej-Pilarczyk A, Rydzanicz M, Kosińska J, Gasperowicz P, Dorszewska J, et al. (2017) A novel de novo COL6A1 mutation emphasizes the role of intron 14 donor splice site defects as a cause of moderate-progressive form of ColVI myopathy - a case report and review of the genotype-phenotype correlation. Folia Neuropathol 55: 214–220. doi: 10.5114/fn.2017.70486 28984114

18. Adams JC, Seed B, Lawler J (1998) Muskelin, a novel intracellular mediator of cell adhesive and cytoskeletal responses to thrombospondin-1. EMBO 17: 4964–4974.

19. Francis O, Han F, Adams JC (2013) Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/RanBPM/CTLH complex. PLoS One 8: e75217. doi: 10.1371/journal.pone.0075217 24143168

20. Prag S, Collett GDM, Adams JC (2004) Molecular analysis of muskelin identifies a conserved discoidin-like domain that contributes to protein self-association. Biochem J 381: 547–559. doi: 10.1042/BJ20040253 15084145

21. Delto CF, Heisler FF, Kuper J, Sander B, Kneussel M, Schindelin H (2015) The LisH motif of muskelin is crucial for oligomerization and governs intracellular localization. Structure 23: 364–373. doi: 10.1016/j.str.2014.11.016 25579817

22. Hasegawa H, Katoh H, Fujita H, Mori K, Negishi M (2000) Receptor isoform-specific interaction of prostaglandin EP3 receptor with muskelin. Biochem Biophys Res Commun 276: 350–354. doi: 10.1006/bbrc.2000.3467 11006128

23. Gueron G, Giudice J, Valacco P, Paez A, Elguero B, Toscani M, et al. (2014) Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget 5: 4087–4102. doi: 10.18632/oncotarget.1826 24961479

24. Umeda M, Nishitani H, Nishimoto T (2003). A novel nuclear protein, Twa1, and Muskelin comprise a complex with RanBPM. Gene 303: 47–54. 12559565

25. Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, et al. (2007) RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8α and ARMC8β are components of the CTLH complex. Gene 396: 236–247. doi: 10.1016/j.gene.2007.02.032 17467196

26. Valiyaveettil M, Bentley AA, Gursahaney P, Hussien R, Chakravarti R, Kureishy N, et al. (2008) Novel role of the muskelin-RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation. J Cell Biol 182: 727–739. doi: 10.1083/jcb.200801133 18710924

27. Debenedittis P, Harmelink C, Chen Y, Wang Q, Jiao K (2011) Characterization of the novel interaction between muskelin and TBX20, a critical cardiogenic transcription factor. Biochem Biophys Res Commun 409: 338–343. doi: 10.1016/j.bbrc.2011.05.020 21586270

28. Ledee DR, Gao CY, Seth R, Fariss RN, Tripathi BK, Zelenka PS (2005) A specific interaction between muskelin and the cyclin-dependent kinase 5 activator p39 promotes peripheral localization of muskelin. J Biol Chem 280: 21376–21383. doi: 10.1074/jbc.M501215200 15797862

29. Tripathi BK, Lowy DR, Zelenka PS (2015) The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp Cell Res 330: 186–198. doi: 10.1016/j.yexcr.2014.08.003 25128817

30. Heisler FF, Loebrich S, Pechmann Y, Maier N, Zivkovic AR, Tokito M, et al. (2011) Muskelin regulates actin filament- and microtubule-based GABA(A) receptor transport in neurons. Neuron 70: 66–81. doi: 10.1016/j.neuron.2011.03.008 21482357

31. Park YM, Kwock CK, Kim K, Kim J, Yang YJ (2017) Interaction between single nucleotide polymorphism and urinary sodium, potassium, and sodium-potassium ratio on the risk of hypertension in Korean adults. Nutrients 9: E235. doi: 10.3390/nu9030235 28273873

32. Nassan M, Li Q, Croarkin PE, Chen W, Colby CL, Veldic M, et al. (2017) A genome wide association study suggests the association of muskelin with early onset bipolar disorder: Implications for a GABAergic epileptogenic neurogenesis model. J Affect Disord 208: 120–129. doi: 10.1016/j.jad.2016.09.049 27769005

33. Ding L, Abebe T, Beyene J, Wilke RA, Goldberg A, Woo JG, et al. (2013) Rank-based genome-wide analysis reveals the association of Ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum Genomics 7: 16. doi: 10.1186/1479-7364-7-16 23829686

34. Li X, Howard TD, Zheng SL, Haselkorn T, Peters SP, Meyers DA, et al. (2010) Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J Allergy Clin Immunol 125: 328–335.e11. doi: 10.1016/j.jaci.2009.11.018 20159242

35. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, et al. (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45: D840–D845. doi: 10.1093/nar/gkw971 27899611

36. ExAC Browser (Beta), Exome Aggregation Consortium, available from http://exac.broadinstitute.org/

37. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536: 285–291. doi: 10.1038/nature19057 27535533

38. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575. doi: 10.1086/519795 17701901

39. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23: 1294–1296. doi: 10.1093/bioinformatics/btm108 17384015

40. Ronnegard L, Shen X, Alam M (2010) hglm: A package for fitting hierarchical generalized linear models. The R Journal 2: 20–28.

41. Turner S (2017) qqman: Q-Q and Manhattan Plots for GWAS Data. R package version 0.1.4. https://CRAN.R-project.org/package = qqman

42. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

43. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987–2993. doi: 10.1093/bioinformatics/btr509 21903627

44. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 20644199

45. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43: 11.0.1–33. doi: 10.1002/0471250953.bi1110s43 25431634

46. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6: 80–92. doi: 10.4161/fly.19695 22728672

47. Bai B, Zhao WM, Tang BX, Wang YQ, Wang L, Zhang Z, et al. (2015) DoGSD: the dog and wolf genome SNP database. Nucleic Acids Res 43 (Database issue): D777–783. doi: 10.1093/nar/gku1174 25404132

Štítky
Genetika Reprodukčná medicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#