#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genomic Imprinting: A New Epigenetic Perspective of Sleep Regulation


article has not abstract


Vyšlo v časopise: Genomic Imprinting: A New Epigenetic Perspective of Sleep Regulation. PLoS Genet 12(5): e32767. doi:10.1371/journal.pgen.1006004
Kategorie: Viewpoints
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1006004

Souhrn

article has not abstract


Zdroje

1. Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res. 2015;24(5):476–93. doi: 10.1111/jsr.12307 26059855.

2. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, et al. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A. 2007;104(50):20090–5. doi: 10.1073/pnas.0710131104 18077435; PubMed Central PMCID: PMC2148427.

3. Massart R, Freyburger M, Suderman M, Paquet J, El Helou J, Belanger-Nelson E, et al. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry. 2014;4:e347. doi: 10.1038/tp.2013.120 24448209; PubMed Central PMCID: PMC3905230.

4. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, et al. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci. 2014;17(3):377–82. doi: 10.1038/nn.3651 24531307.

5. Mignot E. Why we sleep: the temporal organization of recovery. PLoS Biol. 2008;6(4):e106. doi: 10.1371/journal.pbio.0060106 18447584; PubMed Central PMCID: PMC2689703.

6. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10(1):49–62. doi: 10.1016/j.smrv.2005.05.002 16376591.

7. Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev. 2015;28:42–50. doi: 10.1016/j.smrv.2015.08.005 26447948.

8. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34. doi: 10.1016/j.neuron.2013.12.025 24411729; PubMed Central PMCID: PMC3921176.

9. Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol. 2011;3(7). doi: 10.1101/cshperspect.a002592 21576252; PubMed Central PMCID: PMC3119911.

10. Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15(8):517–30. doi: 10.1038/nrg3766 24958438.

11. Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci. 2007;8(11):832–43. doi: 10.1038/nrn2235 17925812.

12. Powell WT, LaSalle JM. Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet. 2015;24(R1):R1–9. doi: 10.1093/hmg/ddv234 26105183.

13. Landgraf D, Koch CE, Oster H. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei. Front Neuroanat. 2014;8:143. doi: 10.3389/fnana.2014.00143 25520627; PubMed Central PMCID: PMC4249487.

14. Tucci V. Sleep, circadian rhythms, and interval timing: evolutionary strategies to time information. Front Integr Neurosci. 2011;5:92. doi: 10.3389/fnint.2011.00092 22319478; PubMed Central PMCID: PMC3250947.

15. Saini C, Suter DM, Liani A, Gos P, Schibler U. The mammalian circadian timing system: synchronization of peripheral clocks. Cold Spring Harb Symp Quant Biol. 2011;76:39–47. doi: 10.1101/sqb.2011.76.010918 22179985.

16. Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am. 2015;38(4):615–44. doi: 10.1016/j.psc.2015.07.002 26600100; PubMed Central PMCID: PMC4660253.

17. Murphy M, Huber R, Esser S, Riedner BA, Massimini M, Ferrarelli F, et al. The cortical topography of local sleep. Curr Top Med Chem. 2011;11(19):2438–46. 21906021; PubMed Central PMCID: PMC3243778.

18. Siegel JM. REM sleep: a biological and psychological paradox. Sleep Med Rev. 2011;15(3):139–42. doi: 10.1016/j.smrv.2011.01.001 21482156; PubMed Central PMCID: PMC3091378.

19. Engle-Friedman M. The effects of sleep loss on capacity and effort. Sleep Sci. 2014;7(4):213–24. doi: 10.1016/j.slsci.2014.11.001 26483932; PubMed Central PMCID: PMC4608917.

20. McNamara P. Genomic imprinting and neurodevelopmental disorders of sleep. Sleep & Hypnosis. 2004;6(2):100–8.

21. Vela-Bueno A, Kales A, Soldatos CR, Dobladez-Blanco B, Campos-Castello J, Espino-Hurtado P, et al. Sleep in the Prader-Willi syndrome. Clinical and polygraphic findings. Arch Neurol. 1984;41(3):294–6. Epub 1984/03/01. 6696648.

22. Vgontzas AN, Kales A, Seip J, Mascari MJ, Bixler EO, Myers DC, et al. Relationship of sleep abnormalities to patient genotypes in Prader-Willi syndrome. Am J Med Genet. 1996;67(5):478–82. Epub 1996/09/20. doi: 10.1002/(SICI)1096-8628(19960920)67:5<478::AID-AJMG7>3.0.CO;2-G 8886165.

23. Hertz G, Cataletto M, Feinsilver SH, Angulo M. Sleep and breathing patterns in patients with Prader Willi syndrome (PWS): effects of age and gender. Sleep. 1993;16(4):366–71. 8341897.

24. Zhdanova IV, Wurtman RJ, Wagstaff J. Effects of a low dose of melatonin on sleep in children with Angelman syndrome. J Pediatr Endocrinol Metab. 1999;12(1):57–67. 10392349.

25. Clayton-Smith J, Laan L. Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet. 2003;40(2):87–95. 12566516.

26. Ehlen JC, Jones KA, Pinckney L, Gray CL, Burette S, Weinberg RJ, et al. Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact. J Neurosci. 2015;35(40):13587–98. doi: 10.1523/JNEUROSCI.2194-15.2015 26446213; PubMed Central PMCID: PMC4595617.

27. Shi SQ, Bichell TJ, Ihrie RA, Johnson CH. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr Biol. 2015;25(5):537–45. doi: 10.1016/j.cub.2014.12.047 25660546; PubMed Central PMCID: PMC4348236.

28. Gossan NC, Zhang F, Guo B, Jin D, Yoshitane H, Yao A, et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 2014;42(9):5765–75. doi: 10.1093/nar/gku225 24728990; PubMed Central PMCID: PMC4027211.

29. Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N, et al. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome. Sleep. 2016; 9(3):637–44.

30. Krauchi K, Deboer T. The interrelationship between sleep regulation and thermoregulation. Front Biosci (Landmark Ed). 2010;15:604–25. 20036836.

31. Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, et al. The imprinted gene Magel2 regulates normal circadian output. Nat Genet. 2007;39(10):1266–72. Epub 2007/09/26. doi: 10.1038/ng2114 17893678.

32. Lassi G, Ball ST, Maggi S, Colonna G, Nieus T, Cero C, et al. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice. PLoS Genet. 2012;8(5):e1002706. doi: 10.1371/journal.pgen.1002706 22589743; PubMed Central PMCID: PMC3349741.

33. Van Someren EJ. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog Brain Res. 2006;153:306–24.

34. Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20120151. doi: 10.1098/rstb.2012.0151 23166401; PubMed Central PMCID: PMC3539366.

35. Stringer JM, Pask AJ, Shaw G, Renfree MB. Post-natal imprinting: evidence from marsupials. Heredity (Edinb). 2014;113(2):145–55. doi: 10.1038/hdy.2014.10 24595366; PubMed Central PMCID: PMC4105450.

36. Flanigan WF Jr., Wilcox RH, Rechtschaffen A. The EEG and behavioral continuum of the crocodilian, Caiman sclerops. Electroencephalogr Clin Neurophysiol. 1973;34(5):521–38. 4121324.

37. Hartse KM, Rechtschaffen A. The effect of amphetamine, nembutal, alpha-methyl-tyrosine, and parachlorophenylalanine on the sleep-related spike activity of the tortoise, Geochelone carbonaria, and on the cat ventral hippocampus spike. Brain Behav Evol. 1982;21(4):199–222. 6218864.

38. Ayala-Guerrero F, Huitron Resendiz S. Behavioral and electrophysiological patterns of wakefulness-sleep states in a lizard. Bol Estud Med Biol. 1991;39(1–4):9–14. 1814316.

39. Huntley AC. Electrophysiological and behavioral correlates of sleep in the desert iguana, Dipsosaurus dorsalis Hallowell. Comp Biochem Physiol A Comp Physiol. 1987;86(2):325–30. 2881673.

40. Siegel JM. Phylogeny and the function of REM sleep. Behav Brain Res. 1995;69(1–2):29–34. 7546315.

41. Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. Monotremes and the evolution of rapid eye movement sleep. Philos Trans R Soc Lond B Biol Sci. 1998;353(1372):1147–57. doi: 10.1098/rstb.1998.0272 9720111; PubMed Central PMCID: PMC1692309.

42. Allison T, Van Twyver H. Electrophysiological studies of the echidna, Tachyglossus aculeatus. II. Dormancy and hibernation. Arch Ital Biol. 1972;110(2):185–94. 4342269.

43. Allison T, Van Twyver H, Goff WR. Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. Arch Ital Biol. 1972;110(2):145–84. 4342268.

44. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Towards a metabolic theory of ecology. Ecology. 2004;85:17771–1789.

45. Bonetti MF, Wiens JJ. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc Biol Sci. 2014;281(1795). doi: 10.1098/rspb.2013.3229 25274369; PubMed Central PMCID: PMC4213603.

46. Clarke A, Rothery P, Isaac NJ. Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol. 2010;79(3):610–9. doi: 10.1111/j.1365-2656.2010.01672.x 20180875.

47. Tinarelli F, Garcia-Garcia C, Nicassio F, Tucci V. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss. Philos Trans R Soc Lond B Biol Sci. 2014;369(1637):20120471. doi: 10.1098/rstb.2012.0471 24446504; PubMed Central PMCID: PMC3895995.

48. Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011;475(7356):381–5. doi: 10.1038/nature10229 21776083; PubMed Central PMCID: PMC3160481.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2016 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#