#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Point Mutation in Suppressor of Cytokine Signalling 2 () Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model


Mastitis is an inflammation of the mammary gland mainly caused by invading bacteria. Ruminants show natural variability in their predisposition to mastitis, and therefore provide unique models for study of the genetics and physiology of host response to bacterial infection. A genome-wide association study was conducted in a dairy sheep population for milk somatic cell counts as a proxy for mastitis. Fine mapping, using whole genome sequencing, led to the identification of a mutation in the Suppressor of Cytokine Signaling 2 gene (socs2). This mutation was shown to cause a loss of functional activity of the SOCS2 protein, which suggested impairment of feedback control of the JAK/STAT signaling pathways in susceptible animals. Additionally, size, weight and milk production were increased in animals carrying the susceptible variant suggesting a pleiotropic effect of the gene on production versus health traits. Results gave strong evidence of the role of SOCS2 in the host’s inflammation of the udder and provided new insights into the key mechanisms underlying the genetic control of mastitis.


Vyšlo v časopise: A Point Mutation in Suppressor of Cytokine Signalling 2 () Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model. PLoS Genet 11(12): e32767. doi:10.1371/journal.pgen.1005629
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005629

Souhrn

Mastitis is an inflammation of the mammary gland mainly caused by invading bacteria. Ruminants show natural variability in their predisposition to mastitis, and therefore provide unique models for study of the genetics and physiology of host response to bacterial infection. A genome-wide association study was conducted in a dairy sheep population for milk somatic cell counts as a proxy for mastitis. Fine mapping, using whole genome sequencing, led to the identification of a mutation in the Suppressor of Cytokine Signaling 2 gene (socs2). This mutation was shown to cause a loss of functional activity of the SOCS2 protein, which suggested impairment of feedback control of the JAK/STAT signaling pathways in susceptible animals. Additionally, size, weight and milk production were increased in animals carrying the susceptible variant suggesting a pleiotropic effect of the gene on production versus health traits. Results gave strong evidence of the role of SOCS2 in the host’s inflammation of the udder and provided new insights into the key mechanisms underlying the genetic control of mastitis.


Zdroje

1. Davies G, Genini S, Bishop SC, Giuffra E (2009) An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal: an international journal of animal bioscience 3: 415–436.

2. Bishop SC, Axford RFE, Nicholas FW, Owen JB (2010) Breeding for Disease Resistance in Farm Animals: CABI.

3. Mediano P, Fernandez L, Rodriguez JM, Marin M (2014) Case-control study of risk factors for infectious mastitis in Spanish breastfeeding women. BMC pregnancy and childbirth 14: 195. doi: 10.1186/1471-2393-14-195 24902596

4. Foxman B, D'Arcy H, Gillespie B, Bobo JK, Schwartz K (2002) Lactation mastitis: occurrence and medical management among 946 breastfeeding women in the United States. American journal of epidemiology 155: 103–114. 11790672

5. Wellnitz O, Bruckmaier RM (2012) The innate immune response of the bovine mammary gland to bacterial infection. Veterinary journal 192: 148–152.

6. Mrode R, Swanson G (1996) Genetic and statistical properties of somatic cell count and its suitability as an indirect means of reducing the incidence of mastitis in dairy cattle. Animal Breeding Abstract 64: 847–857.

7. Heringstad B, Klemetsdal G, Ruane J (2000) Selection for mastitis in dairy cattle: a review with focus on the situation of the Nordic countries. Livestock Production Science 64: 95–106.

8. Detilleux JC (2002) Genetic factors affecting susceptibility of dairy cows to udder pathogens. Veterinary Immunology and Immunopathololy 88: 103–110.

9. Rupp R, Boichard D (2003) Genetics of resistance to mastitis in dairy cattle. Veterinary Research 34: 671–688. 14556700

10. Gonzalo C, Ariznabarreta A, Carriedo JA, San Primitivo F (2002) Mammary pathogens and their relationship to somatic cell count and milk yield losses in dairy ewes. Journal of dairy science 85: 1460–1467. 12146477

11. Ariznabarreta A, Gonzalo C, San Primitivo F (2002) Microbiological quality and somatic cell count of ewe milk with special reference to staphylococci. Journal of dairy science 85: 1370–1375. 12146466

12. Albenzio M, Santillo A, Caroprese M, Ruggieri D, Ciliberti M, et al. (2012) Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis. Journal of dairy science 95: 3877–3887. doi: 10.3168/jds.2012-5357 22720942

13. Rupp R, Bergonier B, Dion S, Hygonenq MC, Aurel MR, et al. (2009) Response to somatic cell count-based selection for mastitis resistance in a divergent selection experiment in sheep. Journal of Dairy Science 92: 1203–1219. doi: 10.3168/jds.2008-1435 19233814

14. Bonnefont CM, Toufeer M, Caubet C, Foulon E, Tasca C, et al. (2011) Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus. BMC genomics 12: 208. doi: 10.1186/1471-2164-12-208 21527017

15. Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, et al. (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324: 522–528. doi: 10.1126/science.1169588 19390049

16. Archibald AL, Cockett NE, Dalrymple BP, Faraut T, Kijas JW, et al. (2010) The sheep genome reference sequence: a work in progress. Animal genetics 41: 449–453. doi: 10.1111/j.1365-2052.2010.02100.x 20809919

17. Sugimoto M, Fujikawa A, Womack JE, Sugimoto Y. Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance; 2006 Apr 25; USA, 103, 6454–6459. pp. 6454–6459.

18. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, et al. (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS computational biology 6: e1001025. doi: 10.1371/journal.pcbi.1001025 21152010

19. Bullock AN, Debreczeni JE, Edwards AM, Sundstrom M, Knapp S (2006) Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America 103: 7637–7642. 16675548

20. Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C (2008) Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. Journal of dairy science 91: 4028–4036. doi: 10.3168/jds.2007-0290 18832229

21. Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA (2002) Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. Journal of dairy science 85: 2681–2691. 12416823

22. Fujimoto M, Naka T (2003) Regulation of cytokine signaling by SOCS family molecules. Trends in immunology 24: 659–666. 14644140

23. Piessevaux J, Lavens D, Peelman F, Tavernier J (2008) The many faces of the SOCS box. Cytokine & growth factor reviews 19: 371–381.

24. Greenhalgh CJ, Hilton DJ (2001) Negative regulation of cytokine signaling. Journal of leukocyte biology 70: 348–356. 11527983

25. Rico-Bautista E, Flores-Morales A, Fernandez-Perez L (2006) Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine & growth factor reviews 17: 431–439.

26. O'Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28: 477–487. doi: 10.1016/j.immuni.2008.03.002 18400190

27. Rupp R, Bergonier D, Dion S, Hygonenq MC, Aurel MR, et al. (2009) Response to somatic cell count-based selection for mastitis resistance in a divergent selection experiment in sheep. Journal of dairy science 92: 1203–1219. doi: 10.3168/jds.2008-1435 19233814

28. Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, et al. (2006) Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature medicine 12: 330–334. 16415877

29. Posselt G, Schwarz H, Duschl A, Horejs-Hoeck J (2011) Suppressor of cytokine signaling 2 is a feedback inhibitor of TLR-induced activation in human monocyte-derived dendritic cells. Journal of immunology 187: 2875–2884.

30. Tannahill GM, Elliott J, Barry AC, Hibbert L, Cacalano NA, et al. (2005) SOCS2 can enhance interleukin-2 (IL-2) and IL-3 signaling by accelerating SOCS3 degradation. Molecular and cellular biology 25: 9115–9126. 16199887

31. Usman T, Yu Y, Liu C, Wang X, Zhang Q, et al. (2014) Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis. Molecular biology reports 41: 8293–8301. doi: 10.1007/s11033-014-3730-4 25205126

32. Greenhalgh CJ, Metcalf D, Thaus AL, Corbin JE, Uren R, et al. (2002) Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. The Journal of biological chemistry 277: 40181–40184. 12208853

33. Greenhalgh CJ, Bertolino P, Asa SL, Metcalf D, Corbin JE, et al. (2002) Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b). Molecular endocrinology 16: 1394–1406. 12040024

34. Metcalf D, Di Rago L, Mifsud S, Hartley L, Alexander WS (2000) The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-gamma and lacking the SOCS-1 gene. Proceedings of the National Academy of Sciences of the United States of America 97: 9174–9179. 10908669

35. Bauman DE, Everett RW, Weiland WH, Collier RJ (1999) Production responses to bovine somatotropin in northeast dairy herds. Journal of dairy science 82: 2564–2573. 10629802

36. Zhang Q, Chen JQ, Lin J, Yu QH, Yu HQ, et al. (2014) Production GH transgenic goat improving mammogenesis by somatic cell nuclear transfer. Molecular biology reports 41: 4759–4768. doi: 10.1007/s11033-014-3347-7 24706058

37. Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, et al. (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163: 253–266. 12586713

38. Dettori ML, Pazzola M, Pira E, Paschino P, Vacca GM (2015) The sheep growth hormone gene polymorphism and its effects on milk traits. The Journal of dairy research 82: 169–176. doi: 10.1017/S0022029915000047 25669323

39. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, et al. (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes & development 11: 167–178.

40. Littlejohn MD, Henty KM, Tiplady K, Johnson T, Harland C, et al. (2014) Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature communications 5: 5861. doi: 10.1038/ncomms6861 25519203

41. Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, et al. (2006) Socs2 and elf5 mediate prolactin-induced mammary gland development. Molecular endocrinology 20: 1177–1187. 16469767

42. Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, et al. (2009) Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle. PLoS genetics 5: e1000666. doi: 10.1371/journal.pgen.1000666 19779552

43. Kadri NK, Sahana G, Charlier C, Iso-Touru T, Guldbrandtsen B, et al. (2014) A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle: additional evidence for the common occurrence of balancing selection in livestock. PLoS genetics 10: e1004049. doi: 10.1371/journal.pgen.1004049 24391517

44. Heringstad B, Klemetsdal G, Steine T (2007) Selection responses for disease resistance in two selection experiments with Norwegian red cows. Journal of Dairy Science 90: 2419–2426. 17430946

45. VanRaden PM, Wiggans GR (1991) Derivation, calculation, and use of national animal model information. J Dairy Sci 74: 2737–2746. 1918547

46. Rupp R, Boichard D, Barbat A, Astruc J, Lagriffoul G, et al. Selection for mastitis resistance in French dairy sheep; 2002 19–23 Aout; Montpellier, France, 119–122. pp. 119–122.

47. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199. 2563713

48. Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 93: 71–80.

49. Legarra A, Fernando RL (2009) Linear models for joint association and linkage QTL mapping. Genet Sel Evol 41: 43. doi: 10.1186/1297-9686-41-43 19788745

50. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971. 7851788

51. Knott SA, Marklund L, Haley CS, Andersson K, Davies W, et al. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069–1080. 9611214

52. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

53. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 20644199

54. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92.

55. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, et al. (2012) Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3: 35. doi: 10.3389/fgene.2012.00035 22435069

56. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14: 178–192. doi: 10.1093/bib/bbs017 22517427

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#