#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Integrator Complex Subunit 6 (Ints6) Confines the Dorsal Organizer in Vertebrate Embryogenesis


Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.


Vyšlo v časopise: The Integrator Complex Subunit 6 (Ints6) Confines the Dorsal Organizer in Vertebrate Embryogenesis. PLoS Genet 9(10): e32767. doi:10.1371/journal.pgen.1003822
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003822

Souhrn

Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.


Zdroje

1. SchneiderS, SteinbeisserH, WargaRM, HausenP (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198.

2. KellyC, ChinAJ, LeathermanJL, KozlowskiDJ, WeinbergES (2000) Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127: 3899–3911.

3. KishimotoY, LeeKH, ZonL, HammerschmidtM, Schulte-MerkerS (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466.

4. KramerC, MayrT, NowakM, SchumacherJ, RunkeG, et al. (2002) Maternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic Bmp signaling. Dev Biol 250: 263–279.

5. MullinsMC, HammerschmidtM, KaneDA, OdenthalJ, BrandM, et al. (1996) Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123: 81–93.

6. NguyenVH, SchmidB, TroutJ, ConnorsSA, EkkerM, et al. (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 199: 93–110.

7. ImaiY, GatesMA, MelbyAE, KimelmanD, SchierAF, et al. (2001) The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development 128: 2407–2420.

8. KawaharaA, WilmT, Solnica-KrezelL, DawidIB (2000) Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc Natl Acad Sci U S A 97: 12121–12126.

9. KawaharaA, WilmT, Solnica-KrezelL, DawidIB (2000) Functional interaction of vega2 and goosecoid homeobox genes in zebrafish. Genesis 28: 58–67.

10. RamelMC, LekvenAC (2004) Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131: 3991–4000.

11. ShimizuT, YamanakaY, NojimaH, YabeT, HibiM, et al. (2002) A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mech Dev 118: 125–138.

12. MelbyAE, ClementsWK, KimelmanD (1999) Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev Biol 211: 293–305.

13. TrindadeM, TadaM, SmithJC (1999) DNA-binding specificity and embryological function of Xom (Xvent-2). Dev Biol 216: 442–456.

14. SanderV, ReversadeB, De RobertisEM (2007) The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. The EMBO J 26: 2955–2965.

15. GawantkaV, DeliusH, HirschfeldK, BlumenstockC, NiehrsC (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14: 6268–6279.

16. OnichtchoukD, GlinkaA, NiehrsC (1998) Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development 125: 1447–1456.

17. FloresMV, LamEY, CrosierKE, CrosierPS (2008) Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish. Nat Cell Biol 10: 346–352.

18. LekvenAC, ThorpeCJ, WaxmanJS, MoonRT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1: 103–114.

19. MelbyAE, BeachC, MullinsM, KimelmanD (2000) Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev Biol 224: 275–285.

20. ReimG, BrandM (2006) Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 133: 2757–2770.

21. ReimG, MizoguchiT, StainierDY, KikuchiY, BrandM (2004) The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein casanova. Dev Cell 6: 91–101.

22. LundeK, BeltingHG, DrieverW (2004) Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. Current biology : CB 14: 48–55.

23. BeltingHG, WendikB, LundeK, LeichsenringM, MossnerR, et al. (2011) Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 356: 323–336.

24. OnichtchoukD, GeierF, PolokB, MesserschmidtDM, MossnerR, et al. (2010) Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol 6: 354.

25. FekanyK, YamanakaY, LeungT, SirotkinHI, TopczewskiJ, et al. (1999) The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126: 1427–1438.

26. Fekany-LeeK, GonzalezE, Miller-BertoglioV, Solnica-KrezelL (2000) The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127: 2333–2345.

27. KoosDS, HoRK (1999) The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. Dev Biol 215: 190–207.

28. LeungT, BischofJ, SollI, NiessingD, ZhangD, et al. (2003) bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130: 3639–3649.

29. LeungT, SollI, ArnoldSJ, KemlerR, DrieverW (2003) Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastula-transition activation of boz expression. Dev Dyn 228: 424–432.

30. YamanakaY, MizunoT, SasaiY, KishiM, TakedaH, et al. (1998) A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev 12: 2345–2353.

31. RoH, DawidIB (2009) Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 11: 1121–1127.

32. RoH, DawidIB (2010) Lnx-2b restricts gsc expression to the dorsal mesoderm by limiting Nodal and Bozozok activity. Biochem Biophys Res Commun 402: 626–630.

33. AlexanderJ, RothenbergM, HenryGL, StainierDY (1999) casanova plays an early and essential role in endoderm formation in zebrafish. Dev Biol 215: 343–357.

34. CooperMS, D'AmicoLA (1996) A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev Biol 180: 184–198.

35. KikuchiY, AgathonA, AlexanderJ, ThisseC, WaldronS, et al. (2001) casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15: 1493–1505.

36. BaillatD, HakimiMA, NäärAM, ShilatifardA, CoochN, et al. (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123: 265–276.

37. RöpkeA, BuhtzP, BohmM, SegerJ, WielandI, et al. (2005) Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene 24: 6667–6675.

38. WielandI, ArdenKC, MichelsD, Klein-HitpassL, BohmM, et al. (1999) Isolation of DICE1: a gene frequently affected by LOH and downregulated in lung carcinomas. Oncogene 18: 4530–4537.

39. WielandI, RöpkeA, StummM, SellC, WeidleUH, et al. (2001) Molecular characterization of the DICE1 (DDX26) tumor suppressor gene in lung carcinoma cells. Oncology Research 12: 491–500.

40. WielandI, SellC, WeidleUH, WieackerP (2004) Ectopic expression of DICE1 suppresses tumor cell growth. Oncology Reports 12: 207–211.

41. DoschR, WagnerDS, MintzerKA, RunkeG, WiemeltAP, et al. (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6: 771–780.

42. WagnerDS, DoschR, MintzerKA, WiemeltAP, MullinsMC (2004) Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6: 781–790.

43. KimmelCB, BallardWW, KimmelS, UllmanB, SchillingTF (1995) Stages of Embryonic Development of the Zebrafish. Dev Dyn 203: 253–310.

44. KobayashiM, ToyamaR, TakedaH, DawidIB, KawakamiK (1998) Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125: 2973–2982.

45. KraussS, JohansenT, KorzhV, FjoseA (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113: 1193–1206.

46. OxtobyE, JowettT (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21: 1087–1095.

47. WeinbergES, AllendeML, KellyCS, AbdelhamidA, MurakamiT, et al. (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122: 271–280.

48. MoriH, MiyazakiY, MoritaT, NittaH, MishinaM (1994) Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Brain Res Mol Brain Res 27: 221–231.

49. AlexandreD, ClarkeJD, OxtobyE, YanYL, JowettT, et al. (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122: 735–746.

50. KudohT, WilsonSW, DawidIB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346.

51. HildM, DickA, RauchGJ, MeierA, BouwmeesterT, et al. (1999) The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126: 2149–2159.

52. SchmidB, FurthauerM, ConnorsSA, TroutJ, ThisseB, et al. (2000) Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127: 957–967.

53. Schulte-MerkerS, LeeKJ, McMahonAP, HammerschmidtM (1997) The zebrafish organizer requires chordino. Nature. 387: 862–863.

54. Dal-PraS, FurthauerM, Van-CelstJ, ThisseB, ThisseC (2006) Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol 298: 514–526.

55. StachelSE, GrunwaldDJ, MyersPZ (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117: 1261–1274.

56. RyuSL, FujiiR, YamanakaY, ShimizuT, YabeT, et al. (2001) Regulation of dharma/bozozok by the Wnt pathway. Dev Biol 231: 397–409.

57. KellyGM, GreensteinP, ErezyilmazDF, MoonRT (1995) Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121: 1787–1799.

58. JolyJS, JolyC, Schulte-MerkerS, BoulekbacheH, CondamineH (1993) The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119: 1261–1275.

59. PyatiUJ, WebbAE, KimelmanD (2005) Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132: 2333–2343.

60. RamelMC, BucklesGR, BakerKD, LekvenAC (2005) WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol 287: 237–248.

61. WengW, StempleDL (2003) Nodal signaling and vertebrate germ layer formation. Birth Defects Res C Embryo Today 69: 325–332.

62. FeldmanB, GatesMA, EganES, DouganST, RennebeckG, et al. (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181–185.

63. BisgroveBW, EssnerJJ, YostHJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126: 3253–3262.

64. ThisseC, ThisseB (1999) Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction. Development 126: 229–240.

65. MenoC, GritsmanK, OhishiS, OhfujiY, HeckscherE, et al. (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4: 287–298.

66. Schulte-MerkerS, van EedenFJ, HalpernME, KimmelCB, Nusslein-VolhardC (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120: 1009–1015.

67. HalpernME, ThisseC, HoRK, ThisseB, RigglemanB, et al. (1995) Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants. Development 121: 4257–4264.

68. TalbotWS, TrevarrowB, HalpernME, MelbyAE, FarrG, et al. (1995) A homeobox gene essential for zebrafish notochord development. Nature 378: 150–157.

69. MorleyRH, LachaniK, KeefeD, GilchristMJ, FlicekP, et al. (2009) A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A 106: 3829–3834.

70. DickmeisT, MourrainP, Saint-EtienneL, FischerN, AanstadP, et al. (2001) A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 15: 1487–1492.

71. MelbyAE, WargaRM, KimmelCB (1996) Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122: 2225–2237.

72. von der HardtS, BakkersJ, InbalA, CarvalhoL, Solnica-KrezelL, et al. (2007) The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr Biol 17: 475–487.

73. MyersDC, SepichDS, Solnica-KrezelL (2002) Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol 243: 81–98.

74. AgathonA, ThisseB, ThisseC (2001) Morpholino knock-down of antivin1 and antivin2 upregulates nodal signaling. Genesis 30: 178–182.

75. ChenY, SchierAF (2002) Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr Biol 12: 2124–2128.

76. FeldmanB, ConchaML, SaudeL, ParsonsMJ, AdamsRJ, et al. (2002) Lefty antagonism of Squint is essential for normal gastrulation. Curr Biol 12: 2129–2135.

77. AokiTO, MathieuJ, Saint-EtienneL, RebagliatiMR, PeyrierasN, et al. (2002) Regulation of nodal signalling and mesendoderm formation by TARAM-A, a TGFbeta-related type I receptor. Dev Biol 241: 273–288.

78. PoulainM, LepageT (2002) Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development 129: 4901–4914.

79. ChenC, ShenMM (2004) Two modes by which Lefty proteins inhibit nodal signaling. Curr Biol 14: 618–624.

80. EzzeddineN, ChenJ, WaltenspielB, BurchB, AlbrechtT, et al. (2011) A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3′-end formation. Mol Cell Biol 31: 328–341.

81. TaoS, CaiY, SampathK (2009) The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling. Development 136: 2757–2765.

82. HanSM, LeeTH, MunJY, KimMJ, KritikouEA, et al. (2006) Deleted in cancer 1 (DICE1) is an essential protein controlling the topology of the inner mitochondrial membrane in C. elegans. Development 133: 3597–3606.

83. HarveySA, SmithJC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7: e1000101.

84. ChenS, KimelmanD (2000) The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development 127: 4681–4689.

85. GritsmanK, ZhangJ, ChengS, HeckscherE, TalbotWS, et al. (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132.

86. ShimizuT, YamanakaY, RyuSL, HashimotoH, YabeT, et al. (2000) Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech Dev 91: 293–303.

87. GriffinK, PatientR, HolderN (1995) Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121: 2983–2994.

88. Schulte-MerkerS, HammerschmidtM, BeuchleD, ChoKW, De RobertisEM, et al. (1994) Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120: 843–852.

89. HarveySA, TumpelS, DubrulleJ, SchierAF, SmithJC (2010) no tail integrates two modes of mesoderm induction. Development 137: 1127–1135.

90. BellipanniG, VargaM, MaegawaS, ImaiY, KellyC, et al. (2006) Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development 133: 1299–1309.

91. VargaM, MaegawaS, BellipanniG, WeinbergES (2007) Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish embryo. Mech Dev 124: 775–791.

92. LachnitM, KurE, DrieverW (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315: 1–17.

93. RebagliatiMR, ToyamaR, FrickeC, HaffterP, DawidIB (1998) Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199: 261–272.

94. LittleSC, MullinsMC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11: 637–643.

95. LiaoEC, ZonLI (1999) Simple sequence-length polymorphism analysis. Methods Cell Biol 60: 181–183.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#