#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Derepression of the Plant Chromovirus Induces Germline Transposition in Regenerated Plants


Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.


Vyšlo v časopise: Derepression of the Plant Chromovirus Induces Germline Transposition in Regenerated Plants. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000868
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000868

Souhrn

Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.


Zdroje

1. KumarA

BennetzenJL

1999 Plant retrotransposons. Annu Rev Genet 33 479 532

2. FeschotteC

JiangN

WesslerSR

2002 Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3 329 341

3. VitteC

PanaudO

QuesnevilleH

2007 LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8 218

4. WangH

LiuJS

2008 LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics 9 382

5. ZhangX

WesslerSR

2004 Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci U S A 101 5589 5594

6. DuC

SwigonováZ

MessingJ

2006 Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6 62

7. VitteC

PanaudO

2005 LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110 91 107

8. WickerT

SabotF

Hua-VanA

BennetzenJL

CapyP

2007 A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8 973 982

9. Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796 815

10. TuskanGA

DifazioS

JanssonS

BohlmannJ

GrigorievI

2006 The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313 1596 1604

11. Rice Annotation Project 2007 Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17 175 183

12. MingR

HouS

FengY

YuQ

Dionne-LaporteA

2008 The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452 991 996

13. SatoS

NakamuraY

KanekoT

AsamizuE

KatoT

2008 Genome structure of the legume, Lotus japonicus. DNA Res 15 227 239

14. The French-Italian Public Consortium for Grapevine Genome Characterization 2007 The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449 463 467

15. MalikHS

EickbushTH

1999 Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73 5186 5190

16. GorinsekB

GubensekF

KordisD

2004 Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21 781 798

17. NakayashikiH

AwaT

TosaY

MayamaS

2005 The C-terminal chromodomain-like module in the integrase domain is crucial for high transposition efficiency of the retrotransposon MAGGY. FEBS Lett 579 488 492

18. GaoX

HouY

EbinaH

LevinHL

VoytasDF

2008 Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18 359 369

19. NovikovaO

MayorovV

SmyshlyaevG

FursovM

AdkisonL

2008 Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Plant J 56 562 574

20. ChengZ

DongF

LangdonT

OuyangS

BuellCR

2002 Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14 1691 1704

21. ZhongCX

MarshallJB

ToppC

MroczekR

KatoA

2002 Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14 2825 2836

22. NagakiK

MurataM

2005 Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13 195 203

23. WeberB

SchmidtT

2009 Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 17 379 396

24. CasacubertaJM

GrandbastienMA

1993 Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res 21 2087 2093

25. HirochikaH

1993 Activation of tobacco retrotransposons during tissue culture. EMBO J 12 2521 2528

26. HirochikaH

SugimotoK

OtsukiY

TsugawaH

KandaM

1996 Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93 7783 7788

27. DingY

WangX

SuL

ZhaiJ

CaoS

2007 SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19 9 22

28. MadsenLH

FukaiE

RadutoiuS

YostCK

SandalN

2005 LORE1, an active low-copy-number Gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44 372 381

29. FukaiE

DobrowolskaAD

MadsenLH

MadsenEB

UmeharaY

2008 Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68 653 663

30. ThykjærT

StillerJ

HandbergK

JonesJ

StougaardJ

1995 The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol Biol 27 981 993

31. SchauserL

HandbergK

SandalN

StillerJ

ThykjærT

1998 Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259 414 423

32. YokotaK

FukaiE

MadsenLH

JurkiewiczA

RuedaP

2009 Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21 267 284

33. HirochikaH

OkamotoH

KakutaniT

2000 Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12 357 369

34. Perez-HormaecheJ

PotetF

BeauclairL

Le MassonI

CourtialB

2008 Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing. Plant Physiol 147 1264 1278

35. McClellandM

NelsonM

RaschkeE

1994 Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22 3640 3659

36. MetteMF

AufsatzW

van der WindenJ

MatzkeMA

MatzkeAJ

2000 Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19 5194 5201

37. WilkinsonJE

TwellD

LindseyK

1997 Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48 265 275

38. FischerU

KuhlmannM

PecinkaA

SchmidtR

MetteMF

2007 Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation. Plant J 53 1 10

39. BorgesF

GomesG

GardnerR

MorenoN

McCormickS

2008 Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148 1168 1181

40. SlotkinRK

VaughnM

BorgesF

TanurdzicM

BeckerJD

2009 Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136 461 472

41. KomatsuM

ShimamotoK

KyozukaJ

2003 Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15 1934 1944

42. ReindersJ

WulffBB

MirouzeM

Mari-OrdonezA

DappM

2009 Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23 939 950

43. MeissnerA

MikkelsenTS

GuH

WernigM

HannaJ

2008 Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454 766 770

44. TanurdzicM

VaughnMW

JiangH

LeeTJ

SlotkinRK

2008 Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6 e302 doi:10.1371/journal.pbio.0060302

45. SinghJ

FreelingM

LischD

2008 A position effect on the heritability of epigenetic silencing. PLoS Genet 4 e1000216 doi:10.1371/journal.pgen.1000216

46. ChengC

DaigenM

HirochikaH

2006 Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics 276 378 390

47. OkadaT

EndoM

SinghMB

BhallaPL

2005 Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44 557 568

48. IngouffM

HamamuraY

GourguesM

HigashiyamaT

BergerF

2007 Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17 1032 1037

49. SakamotoK

OhmidoN

FukuiK

KamadaH

SatohS

2000 Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44 723 732

50. CermakT

KubatZ

HobzaR

KoblizkovaA

WidmerA

2008 Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16 961 976

51. TsukaharaS

KobayashiA

KawabeA

MathieuO

MiuraA

2009 Bursts of retrotransposition reproduced in Arabidopsis. Nature 461 423 426

52. HandbergK

StougaardJ

1992 Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2 487 496

53. ThykjærT

SchauserL

DanielsenD

FinnemanJ

StougaardJ

1998 Agrobacterium-mediated transformation of the diploid legume Lotus japonicus. Cell Biology: a Laboratory Handbook, Ed 23 518 525

54. AndersenSU

CvitanichC

GrønlundM

BuskH

JensenDB

2005 Vectors for reverse genetics and expression analysis. in: Lotus japonicus handbook Springer 289 292

55. CloughSJ

BentAF

1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16 735 743

56. ChangS

PuryearJ

CairneyJ

1993 A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11 113 116

57. KumakiY

OdaM

OkanoM

2008 QUMA: quantification tool for methylation analysis. Nucleic Acids Res 36 W170 W175

58. HetzlJ

FoersterAM

RaidlG

Mittelsten ScheidO

2007 CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J 51 526 536

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#