#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prevalence of haemostatic genes’ polymorphisms in men and women with venous thromboembolism in the Czech Republic – a population-based study of cases and controls


Authors: Jan Kvasnička 1;  Zuzana Zenáhlíková 2;  Renata Cífková 3;  Sylvie Šťastná 2;  Zuzana Kovářová Kudrnová 2;  Radka Brzežková 2;  Jaroslava Hájková 2;  Petra Bobčíková 2;  Alena Syrůčková 2;  Petra Linhartová 2;  Martin Ševčík 2;  Daniela Dušková 4;  Tomáš Kvasnička 2
Authors‘ workplace: 1. interní klinika – klinika hematologie 1. LF UK a VFN v Praze 1;  Trombotické centrum, Ústav lékařské biochemie a laboratorní diagnostiky 1. LF UK a VFN v Praze 2;  Centrum kardiovaskulární prevence 1. LF UK a VFN v Praze 3;  Fakultní transfuzní oddělení VFN v Praze 4
Published in: Čas. Lék. čes. 2025; 164: 143-149
Category: Original Article

Overview

Our study aimed to determine the prevalence of five polymorphisms of haemostatic genes rs6025 (F5, Leiden), rs1799963 (F2, prothrombin), rs2066865 (FGG), rs2289252 (F11), and rs8176719 (ABO), in 2 cohorts of 924 men and 1,706 women who had venous thromboembolism (VTE), and to compare their occurrence with that in two control groups of healthy individuals (1,516 men and 1,121 women) with no history of VTE in the Czech Republic.

Statistically significant increases in the prevalence of rs6025 (F5), rs1799963 (F2), rs2066865 (FGG), rs2289252 (F11) and rs8176719 (ABO) were found in both groups of men and women compared to controls (all p ˂ 0.0001). Both F5 Leiden variants increase the risk of VTE. In male homozygotes 70.56-fold, in male heterozygotes 5.45-fold; in female homozygotes 18.8-fold and in female heterozygotes 5.58-fold. For rs1799963 (F2), the risk of VTE was statistically significantly increased only in the heterozygous variant (3.86-fold in males and 3.95-fold in females). Mutated homozygotes could not be evaluated due to their rare occurrence in the sample. An increase in the risk of VTE of the rs2066865 (FGG) variants was again observed in males (1.8-fold in homozygotes, 1.17-fold in heterozygotes) and females (1.88-fold in homozygotes, 1.32-fold in heterozygotes). Derived variants of rs2289252 (F11) also increased the risk of VTE (1.8-fold in male homozygotes and 1.5-fold in male heterozygotes;1.73-fold in female homozygotes and 1.35-fold in female heterozygotes). Again, we found a higher risk of VTE in individuals with VTE when mutant variants of rs8176719 (ABO) were present. In male homozygotes, it was 4.03-fold and in heterozygotes 2.38-fold. In homozygous women, it was 3.16-fold and in heterozygotes 2.11-fold.

Conclusions: Our study confirms that in the Czech Republic, in addition to the known thrombophilic mutations rs6025 (F5) and rs1799963 (F2), there is also a higher prevalence of polymorphisms of the haemostatic gene rs2066865 (FGG), rs2289252 (F11) and rs8176719 (ABO) in both sexes, which can therefore be identified as additional independent heritable risk factors for the VTE.

Keywords:

venous thromboembolism, rs6025 (F5), Leiden, rs1799963 (F2), prothrombin, rs2066865 (FGG), rs2289252 (F11), rs8176719 (ABO), Czech Republic, men, women


Sources
  1. Cohen AT, Agnelli G, Anderson FA et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb Haemost 2007; 98 : 756–764.
  2. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis 2016; 41 : 3–14.
  3. Raskob GE, Angchaisuksiri P, Blanco AN et al. Thrombosis: a major contributor to the global disease burden. J Thromb Haemost 2014; 12 : 1580–1590.
  4. Bell EJ, Lutsey PL, Basu S et al. Lifetime risk of venous thromboembolism in two cohort studies. Am J Med 2016; 129 : 339. e19–e26.
  5. Heit JA, Ashrani A, Crusan DJ et al. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost 2017; 117 : 390–400.
  6. Farrell JJ, Sutter C, Tavri S, Patel I. Incidence, and interventions for post-thrombotic syndrome. Cardiovasc Diagn Ther 2016; 6 : 623–631.
  7. Konstantinides SV, Meyer G, Becattini C et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41 : 543–603.
  8. Jansa P, Ambrož D, Kuhn M et al. Epidemiology of chronic thromboembolic pulmonary hypertension (CTEPH) in the Czech Republic. Pulm Circ 2022; 12: e12038.
  9. Klok FA, Ageno W, Ay C et al. Optimal follow-up after acute pulmonary embolism: a position paper of the European Society of Cardiology Working Group on Pulmonary Circulation and Right Ventricular Function, in collaboration with the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology, endorsed by the European Respiratory Society. Eur Heart J 2022; 43 : 183–189.
  10. Kyrle PA, Kammer M, Eischer L et al. The long-term recurrence risk of patients with unprovoked venous thromboembolism: an observational cohort study. J Thromb Haemost 2016; 14 : 2402–2409.
  11. Jiménez D, Díaz G, Marín E et al. The risk of recurrent venous thromboembolism in patients with unprovoked symptomatic deep vein thrombosis and asymptomatic pulmonary embolism. Thromb Haemost 2006; 95 : 562–566.
  12. Kearon C. Extended anticoagulation for unprovoked venous thromboembolism: a majority of patients should be treated. J Thromb Thrombolysis 2011; 31 : 295–300.
  13. Barco S, Corti M, Trinchero A et al. Survival and recurrent venous thromboembolism in patients with first proximal or isolated distal deep vein thrombosis and no pulmonary embolism. J Thromb Haemost 2017; 15 : 1436–1442.
  14. Rosendaal F. Venous thrombosis: a multicausal disease. Lancet 1999; 353 : 1167–1173.
  15. Zöller B, Svensson PJ, Dahlbäck B et al. Genetic risk factors for venous thromboembolism. Expert Rev Hematol 2020; 13 : 971–981.
  16. Klarin D, Busenkell E, Judy R et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat Genet 2019; 51 : 1574–1579.
  17. Lindström S, Wang L, Smith EN et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 2019; 134 : 1645–1657.
  18. Thibord F, Klarin D, Brody JA et al. Cross-ancestry investigation of venous thromboembolism genomic predictors. Circulation. 2022; 146 : 1225–1242.
  19. Ghouse J, Tragante V, Ahlberg G et al. Genome-wide meta-analysis identifies 93 risk loci and enables risk prediction equivalent to monogenic forms of venous thromboembolism. Nat Genet 2023; 55 : 399–409.
  20. Tang W, Teichert M, Chasman DI et al. A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Genet Epidemiol 2013; 37 : 512–521.
  21. Trégouët DA, Heath S, Saut N et al. Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach. Blood 2009; 113 : 5298–5303.
  22. Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114 : 885–889.
  23. Cífková R, Bruthans J, Wohlfahrt P et al. 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985–2016/17. PLoS One 2020; 15: e0232845.
  24. Kvasnička T, Hájková J, Bobčíková P et al. The frequencies of six important thrombophilic mutations in a population of the Czech Republic. Physiol Res 2014; 63 : 245–253.
  25. Rinde LB, Morelli VM, Småbrekke B et al. Effect of prothrombotic genotypes on the risk of venous thromboembolism in patients with and without ischemic stroke. The Tromsø Study. J Thromb Haemost 2019; 17 : 749–758.
  26. Skille H, Paulsen B, Hveem K et al. Combined effects of five prothrombotic genotypes and cancer on the risk of a first venous thromboembolic event. J Thromb Haemost 2020; 18 : 2861–2869.
  27. Bare LA, de Haan HG, Arellano AR et al. A simple genetic thrombosis score of five single nucleotide polymorphisms is associated with risk of first venous thrombosis in pregnant women. Blood 2013; 122 : 3617.
  28. Liley J, Newnham M, Bleda M et al. Shared and distinct genomics of chronic thromboembolic pulmonary hypertension and pulmonary embolism. Am J Respir Crit Care Med 2024; 209 : 1477–1485.
  29. Kvasnička J, Jansa P, Cífková R et al. The incidence of the thrombophilic SNPs rs6025, rs1799963, rs2066865, rs2289252, and rs8176719 in chronic thromboembolic pulmonary hypertension. Clin Appl Thromb Hemost 2024; 30 : 10760296241271369.
  30. de Haan HG, Bezemer ID, Doggen CJ et al. Multiple SNP testing improves risk prediction of first venous thrombosis. Blood 2012; 120 : 656–663.
  31. van Hylckama Vlieg A, Flinterman LE, Bare LA et al. Genetic variations associated with recurrent venous thrombosis. Circ Cardiovasc Genet 2014; 7 : 806–813.
  32. Folsom AR, Tang W, Weng LC et al. Replication of a genetic risk score for venous thromboembolism in whites but not in African Americans. J Thromb Haemost 2016; 14 : 83–88.
  33. Bertina RM, Koeleman BP, Koster T et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 : 64–67.
  34. Kvasnička T, Cifkova R, Zenahlikova Z et al. The prevalence of the thrombotic SNPs rs6025, rs1799963, rs2066865, rs2289252 and rs8176719 in patients with venous thromboembolism in the Czech population. Clin Appl Thromb Hemost 2025; 31 : 10760296251324202.
  35. Roach RE, Lijfering WM, Rosendaal FR et al. Sex difference in risk of second but not of first venous thrombosis: paradox explained. Circulation 2014; 129 : 51–56.
  36. Douketis J, Tosetto A, Marcucci M et al. Risk of recurrence after venous thromboembolism in men and women: patient level meta-analysis. Brit Med J 2011; 342: d813.
  37. McRae S, Tran H, Schulman S et al. Effect of patient’s sex on risk of recurrent venous thromboembolism: a meta-analysis. Lancet 2006; 368 : 371–378.
  38. Christiansen SC, Lijfering WM, Helmerhorst FM et al. Sex difference in risk of recurrent venous thrombosis and the risk profile for a second event. J Thromb Haemost 2010; 8 : 2159–2168.
  39. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3' -⁠ untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88 : 3698–703.
  40. Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3'-end formation. J Thromb Haemost 2004; 2 : 119–127.
  41. Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ et al. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels. Blood 2005; 106 : 4176–4183.
  42. Uitte de Willige S, Rietveld IM, De Visser MC et al. Polymorphism 10034 C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen gamma'/gamma A mRNA ratio. J Thromb Haemost 2007; 5 : 1243–1249.
  43. Li Y, Bezemer ID, Rowland CM et al. Genetic variants associated with deep vein thrombosis: the F11 locus. J Thromb Haemost 2009; 7 : 1802–1808.
  44. Lunghi B, Cini M, Legnani C et al. The F11 rs2289252 polymorphism is associated with FXI activity levels and APTT ratio in women with thrombosis. Thromb Res 2012; 130 : 563–564.
  45. Gailani D., Gruber A. Targeting factor XI and factor XIa to prevent thrombosis. Blood 2024; 143 : 1465–1475.
  46. Yamamoto F, Clausen H, White T et al. Molecular genetic basis of the histo–blood group ABO system. Nature 1990; 345 : 229–233.
  47. Groot HE, Villegas Sierra LE, Said MA et al. Genetically determined ABO blood group and its associations with health and disease. Arterioscler Thromb Vasc Biol 2020; 40 : 830–838.
  48. Sabater-Lleal M, Huffman JE, de Vries PS et al. Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels. Circulation 2019; 139 : 620–635.
  49. Michels A, Lillicrap D, Yacob M. Role of von Willebrand factor in venous thromboembolic disease. JVS Vasc Sci 2021; 3 : 17–29.
  50. Kryle PA, Minar E, Hirschl M et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343 : 457–462.

   

Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist

Article was published in

Journal of Czech Physicians

Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#